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Abstract

Entropy and Information Recovery in Linear Economics Models

by

Douglas James Miller 

Doctor of Philosophy in Agricultural and Resource Economics 

University of California at Berkeley 

Professor George G. Judge, Chair

The purpose of the dissertation research is to examine the the properties and 

performance of the generalized maximum entropy (GME) and generalized minimum 

cross-entropy (GCE) methods of information recovery. The GME-GCE framework 

was devised by Judge and Golan as a feasible means for solving linear inverse prob­

lems. Given the limitations of economic data, such problems are frequently ill-posed 

or ill-conditioned, and the associated solutions are either non-unique or unstable. 

Using limited prior knowledge (from theory or experience), the unknown system pa­

rameters and disturbances of the general linear model are reparameterized in terms 

of probabilities. The GME-GCE problem is to recover the set of probability dis­

tributions on the unknowns that satisfy the observed (sample) information and are 

‘closest’ to the prior information.

Although the GM E-GCE solution does not take a closed form, the dual for­

mulation of the problem may be used to compute the solution using unconstrained 

techniques, and a computer algorithm is presented. By treating the dual approach 

as an M -estimation problem, the solution to the GME-GCE problem is shown to 

be consistent and asymptotically normal under modest regularity conditions. In fi­

nite samples, the GME-GCE solution also exhibits shrinkage properties, including 

reduced precision loss (i.e. mean squared error) relative to the traditional estimators.

The performance of the GME-GCE solutions for common economic inverse prob­

lems are examined with Monte Carlo sampling experiments. First, a bounded mean is 

recovered from a single observation, and the GME solution is compared to restricted 

ML and Bayes methods. Second, an ill-conditioned design m atrix is devised, and the
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unknown parameters are recovered by LS, RLS, ridge, and GME-GCE. Finally, a lin­

ear model subject to an AR(1) error process is used to demonstrate the performance 

of GME under various error specifications. In general, the GME-GCE solutions risk- 

dominate the traditional methods, are robust under alternate model specifications, 

and are able to avoid the ill effects of poor prior information. The generalized en­

tropy framework may be extended to a variety of familiar economic inverse problems, 

including qualitative choice models, inverse control problems, and Markov chains.
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M athematical Notation

%n an (n x  1 ) vector of ones

In an (d x n) identity m atrix

Jn an (n x n) matrix of ones

0 empty set

int(^4) interior of set A

d(A) boundary of set A

Kronecker product

© Hadamard product

-» point-wise convergence

4 convergence in probability (weak)

=» convergence in distribution (law)

O(aj) at most of order ar

Op(aj) at most of stochastic order ar

cosh(-) hyperbolic cosine

tanh(-) hyperbolic tangent
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1.1 Linear Inverse Problem s in Econom ics

One objective of economic research is to predict the behavior of agents, y (z y ,  

from information about their economic environment, X  € X .  Unfortunately, the 

underlying economic system

m:  X  y

is rarely known or observable, and the research task becomes a two-stage process. An 

image of the system, m  6  Ad, must be recovered from available information before 

inferences about choices or actions may be formed. The set of available information, 

I ,  typically includes the implications of theory, experience, and other prior knowledge

as well as indirect measurements of the system (e.g. previous observations of y and

X ). The two stages of the research problem, prediction and information recovery, are 

commonly known as the direct problem,

(DP) m : X - + y

and the inverse problem,

(IP) n : T - * M

respectively.

To illustrate the direct-inverse problem framework, consider the (direct) problem 

of predicting aggregate retail demand for some good in a future period. Individual and 

aggregate demand correspondences are rarely known or observed, so inferences about 

future behavior must be based on some image of the underlying system. Consumer 

theory provides one basis for analyzing individual and aggregate demands, and a 

typical system expresses quantity demanded as a function of relevant prices, income, 

and demographic or other exogenous variables. The information set then includes past 

observations on these variables as well as the implications of consumer theory (e.g. 

homogeneity) and previous research on demand for the good. The inverse problem 

is to recover an image of the aggregate demand system tha t satisfies the assembled 

information in some reasonable fashion.
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In general, inverse problems with unique solutions are said to be well-posed. The 

resulting image of the economic system, m, may be used to solve the direct problem

(DP) m : X 0 ->• y

where Xo is the conditioning information and y is the associated prediction. If the 

inverse problem does not have a unique solution, the problem is said to be ill-posed 

(Tikhonov and Arsenin, 1977). Sabatier (1987) discusses the various degrees of ill— 

posedness (e.g. multiple, set-valued, or infinitely-many solutions), and O’Sullivan 

(1986) provides a summary of recent research on ill-posed problems. Fundamentally 

well-posed problems are said to be ill-conditioned if there are multiple solutions 

or if the solution changes sharply given modest shifts in the available information 

(unstable). Limitations of the indirect observations are the most common source of 

ill-conditioning, and the potential problems include actual or incidental dependencies 

among the observations as well as measurement errors.

By assuming additional information or imposing regularity conditions, researchers 

may be able to devise a refined class of admissible systems, M.* C A4, which admits 

a unique solution. A common approach is to restrict M.* to some family of finite­

dimensional parametric systems

(1.1) y = m ( X , p )

where f3 E B C $ t h . Among the class of parametric forms, the general linear model 

(GLM) y = X(3 + e

is a convenient approximation of the true system. Here, y is a T-vector of indirect 

observations composed of additive signal and noise components. The signal, X/3, is 

a linear combination of K  non-stochastic explanatory variables, X , with response 

weights j3. The noise term, e, is a T-vector of unobserved disturbances that may rep­

resent the random aspects of human behavior as well as approximation, specification, 

or measurement errors. The problem of recovering information about (3 is known as 

a linear inverse problem.
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If the system is non-stochastic and is observed without noise, IP is said to be a 

pure inverse problem. The task of solving pure inverse problems is largely an exercise 

in applied mathematics. In the case of the pure GLM, y = Xf3,  the linear inverse 

problem may be solved as a system of equations. The standard solution is a linear 

inversion operator, A, such that

P =  A ( X) y

If X is a square m atrix (i.e. T  = K)  with full column rank, r ( X)  =  K,  A  =  X ~ l . If 

T  > K,  the rank of X  is still K , and any K  x I\ partition of X  may be inverted to 

form A. Searle (1982, p. 234) shows that A =  {X ' X) ~ l X '  is an equivalent approach. 

Clearly, X - 1  is not unique and the problem is ill-posed if T  < K.  Further, the 

problem is ill-conditioned if T  > K  but r (X)  < K.

Given the numerous sources of noise in the underlying system or the indirect obser­

vations, pure inverse problems are rare in practice. In the presence of disturbances, 

IP is said to be an inverse problem with noise. The information set for the linear 

inverve problem, I ,  may now include the distribution, bounds, moments, or other 

properties of the disturbances. For the GLM, I  should include any known properties 

of e relevant to the task of recovering information about /?. The principle methods 

used to recover information in the noise case are discussed in the next section.

Returning to the demand example, the available information is rarely enough 

to identify the aggregate demand structure, and the model is often restricted to a 

finite-dimensional linear model with some theoretical basis (e.g. Rotterdam, AIDS, 

or linear expenditure system). Given the considerable potential for measurement and 

specification errors, as well as randomness in consumer choice, the task of recovering 

the demand system is almost certainly a linear- inverse problem with noise. Further, 

the demand problem may be ill-posed if the number of observations used to recover 

the demand system is insufficient. Limitations of the observations such as collinearity 

or measurement errors may result in inadmissible or unstable estimates of /?, even if 

the problem is well-posed. The effects of ill-conditioning may be treated by imposing 

additional prior information on the unknown parameters. For example, the unknown 

parameters in log-linear demand systems take the form of price, income, or other
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elasticities, which may be bounded or signed a priori.

Economic and other data are often aggregated observations of unreplicated, non- 

experimental events. Further, the indirect observations may be noisy, limited, partial, 

or incomplete. For example, demand statistics are often based on preliminary sur­

veys subject to sampling errors or revisions (noisy). The observations may represent 

quarterly or annual (limited) measures of average per capita (partial) disappearance 

rather than true demand (incomplete). The properties of the demand example are 

characteristic of, but not peculiar to, economic inverse problems. Consequently, ill- 

posed or ill-conditioned inverse problems are rather common in economics and other 

disciplines, and solution techniques designed for well-posed orthogonal experimental 

designs may be infeasible or inappropriate.

Conversely, economic theory or empirical knowledge may provide information that 

may be used to regularize the inverse problem. For example, consumer theory may 

impose restrictions on the signs or magnitudes of unknown demand parameters (e.g. 

elasticities, flexibilities, and multipliers). The prior information may take the form 

of subjective probability distributions specified on the relevant parameter space, 

B. Therefore, many inverse problems in economics may be augmented to form a 

refined solution space, M *. The critical aspect of the information recovery task is 

employing substantive prior knowledge rather than creative assumptions to regularize 

the inverse problem.

The set of solution methods is very large, and it includes many variations based on 

the properties of the available sample and prior information as well as the underlying 

estimation and inferential philosophy. Before introducing the entropy-based methods 

of information recovery, a brief review of the traditional methods is provided. In this 

way, the entropy methods may be compared with the existing techniques as the 

discussion proceeds.

1.2 Traditional M ethods o f Inform ation R ecovery

A variety of estimation and inferential philosophies and associated methods have 

been devised to recover information from inverse problems with noise. Throughout
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much of the following discussion, the noise term, e, is assumed to be a random vector 

with distribution F(e).  Given tha t X  is fixed, the associated density or mass function 

for y given X  and /3 is given by the Radon-Nikodyn derivative

with respect to some measure, v  (e.g. counting or Lebesgue). For convenience, the 

probability functions are abbreviated F(y)  and f (y) .

If the distribution is unknown, it is common to assume tha t F(e)  is centered 

about 0 and has a finite, positive definite variance-covariance matrix, £ e. Alternately, 

suppose e is a vector of disturbances such that

e E £c = {z E : z"E~xz < c}

for some bound, c > 0. The disturbances may be non-random but unknown, or they 

may be random on a bounded support. Although £ e or c are rarely known in practice, 

the properties of many estimators are largely unaffected if the scale parameter is 

estimated in a consistent fashion. Nonetheless, the assumption will be weakened later.

1.2.1 Likelihood M ethods

The density or mass function, f (y) ,  is perhaps the most common tool used to spec­

ify and recover information about the underlying system. By specifying a parametric 

functional form, researchers employ very specific information about the stochastic 

properties of y. When viewed as a function of f3, f ( y )  is known as the likelihood 

function  of (3 given y and X , L y((3). The Likelihood Principle (LP) (Berger and 

Wolpert, 1988) asserts tha t all of the information about (3 for a given sample is ex­

pressed in L y(f3). The frequentist and Bayesian approaches to information recovery 

employ L y((3), but the associated methods and their interpretation are fundamentally 

different.

Maximum Likelihood Estimation

The Maximum Likelihood (ML) approach has a long history in statistics and 

may be traced back to Gauss (Bickel and Doksum, 1977, p. 99). The modern ML
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theory is based on efforts by R. A. Fisher (Fisher, 1950) to devise an efficient means 

of recovering information about the system parameters. Given the parametric form 

L y(f3), ML recovers the image of the system parameter, /?, tha t is ‘most likely’ for 

the observed sample, y and X .  Formally, the ML estimation problem solves

(ML) max L y(/3)

A considerable portion of the statistical estimation literature is devoted to the 

properties and limitations of ML techniques. In general, the ML solutions are ad­

missible because Ly(/3) is defined on B. Although the finite-sample properties may 

be unknown, ML estimates are typically consistent as well as asymptotically un­

biased, efficient, and normal under suitable sets of regularity conditions (Spanos, 

1986; Lehmann, 1983). Conversely, ML solutions may not exist for small samples 

(ill-posed problems) or in special cases of certain parametric families (e.g. y j, con­

taminated normal, three-param eter log-normal).

In ill-conditioned problems, L y(f3) may be very ‘flat’. Consequently, the global 

maximum of the likelihood function may be difficult to identify, and the resulting 

ML estimates will be unstable. The relevant parameter space for the ML problem, 

B, may be restricted to half-spaces or other subsets of 3?A consistent with available 

prior information about /3.

Bayesian and Minimax Inference

The Bayesian or subjective approach takes the likelihood function as the sample 

information used to form inferences about (3. By treating the unknown parameters 

as random variables, prior information about the unknowns may be expressed as a 

subjective probability distribution, g{f3). The sample and non-sample information 

is combined through Bayes Rule to derive the posterior distribution of (3 given the 

observed sample

f { y \ P ) - 9 { ( 3 )
g{P\y)  =

f { y )

«  f W ) ’ 9{P)
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The posterior distribution, g({3\y), is the principle product of Bayesian inference, 

but point estimates may be recovered under some loss function, L(/?,/3). The point 

estimate, (3, minimizes posterior risk (expected loss)

P 0 )  = Jh( (3 j ) . g( f3 \y )d/3

If £-(/?,/?) is a squared-error, absolute-error, or 0-1 loss function, f3 is the mean, 

median, or mode of g(fl\y), respectively. Finally, the predictive density, f (y\y) ,  may 

be used to solve the DP.

Advocates of Bayesian inference cite the conceptual appeal of prior probability 

measures and the implications of the LP as evidence in favor of the subjective ap­

proach. In addition, Bayesian analysts may remove nuisance parameters by aver­

aging over their prior distribution, discuss the unknown parameters in probabilistic 

terms, and examine the robustness of the results under alternate sets of prior informa­

tion. The principle drawbacks of the Bayesian approach are the inevitable controversy 

surrounding subjective probability and the analytical and computational burdens of 

solving most problems. For example, the posterior risk functions must be numerically 

evaluated if the posterior is not an amenable form or is of high dimension.

Bayesians argue that ML estimates are often special cases of the subjective ap­

proach. For example, Bayes Rule implies that the posterior distribution is proportional 

to the likelihood function under a diffuse prior. Then, the Bayes and ML point esti­

mates will be equal for any posterior risk function tha t is minimized at the posterior 

mode. Under an informative prior distribution, the likelihood is weighted to reflect 

our information about (3. Consequently, some authors view the Bayesian approach as 

a weighted, penalized, or generalized ML approach.

Minimax estimation is related to the Bayes approach in that it considers the 

global risk-consequences of choosing (3 G B.  The minimax objective guards against 

very large losses by choosing a point estimate that minimizes the ‘maximum risk’ 

function

mm max j  L((3,j3)dF(y)

The minimax approach has been justified by decision theoretic arguments which show 

that a minimax estimator is Bayes for the worst possible prior distribution (Leh m a n n ,
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1983, Theorem 4.2.1). Critics of the minimax approach argue tha t guarding against 

the ‘maximum loss’ is a very conservative means of information recovery. Further, 

closed-form minimax estimators rarely exist in practice due to the difficult task of 

evaluating the maximum risk function.

An alternate formulation of the minimax problem is used in the optimal recovery 

(OR) literature, and Donoho (1994, p. 255) provides an interesting example to illus­

trate the principles involved. For K  =  1, suppose we are trying to recover an image of 

(3 from a single observation, y = (3 + e. Here, (3 £  [—d, d] is unknown, and e € [—c, c] 

is selected by an antagonistic opponent. The minimax rule used for optimal recovery 

is

(OR) minsup \0 — f3\
(3<d  e < c

The solution to the problem is

0 if c < d

(1 -2 ) 0oR — ' y  if c > d

(fry if c — d

for some <fr £ [0,1]. Consequently, games such as the OR problem may be treated as 

inverse problems. Although most economists are familiar with the minimax criterion 

in statistical and game-tlieoretic exercises, these are rarely viewed as cases of the 

same solution framework.

Other M odel-based M ethods

The properties of the assumed statistical model, F(y),  may be used to derive

estimators under alternate criteria. One of the most common approaches is to restrict

the class of admissible estimators and choose an optimal member of the class. Common 

restrictions include unbiasedness or invariance to transformations, and examples of 

optimality rules are the Best Linear Unbiased (BLU), Uniform Minimum Variance 

Unbiased (UMVU), and Minimum Risk Equivariant (MRE) criteria.

The James-Stein estimator and other shrinkage techniques (Lehmann, 1983, Sec­

tion 4.6) are members of a very important class of estimation tools. In general, shrink­
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age techniques improve mean squared error (MSE) by multiplying the traditional sam­

ple estimators by some shrinkage factor. The resulting estimation rule may be biased 

but has smaller variance than the original estimator. For an appropriate shrinkage 

factor, the variance of the shrinkage rule will be small enough to offset the associ­

ated bias and reduce MSE. In some cases, the shrinkage rules may be equivalent to 

Bayesian or MOR estimators. Note tha t the estimator derived for the optimal recovery 

example, Equation (1.2), is a shrinkage rule — the observation is used in proportion 

to the relative strength of the underlying signal-noise ratio.

1.2.2 M ethods o f M oments

Pearson’s Method of Moments (MOM) is one of the oldest techniques for recov­

ering information about unknown parameters. Suppose a; is a random variable with 

distribution F(x,  9) where 9 is a I\ -vector of unknown parameters. Given T  obser­

vations of x , the MOM approach attem pts to identify the unknowns by using K  

functions of the sample. Typically, the first K  noncentral moments of the population

Hk = J  x hdF(x,9)

are equated with their sample analogs

» k =  T - ' Y ,  x tk 
(= 1

The K  equations are then solved for the unknown parameters

A classic MOM example considers a random variable, x, with unknown mean \i 

and variance <r2. Assuming we know the first two sample moments of the data, we 

can write the moment relations as

(1.3) T - ' Y . X t  = P = E[x]
t= i

(1.4) T - ^ X f  = fi2 + a 2 = E[x2]
t=i
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Solving for fi and <r2, the MOM estimates are

(1.5) fi = X t

(1.6) d2 =  T - ' ^ X i - X t )2
t=i

which are identical to the ML estimates for a N(fi,  a 2) model. Davidson and Solomon 

(1974) note that the MOM and ML rules may be related for certain exponential 

families.

In general, MOM provides consistent estimators for the unknown parameters. If 

the sample moments are not one-to-one functions of the population moments and 

each gic{') is continuous, then the estimators, {#}, converge in probability to 9 if the 

sample moments are also consistent (Spanos, 1986, p. 256). Fisher and other early 

critics of MOM point out that more efficient estimators of 6 may be developed. In 

particular, Casella and Berger (1990, p. 342) note that MOM estimates are not gen­

erally functions of sufficient statistics, and these may be improved by the implications 

of the Rao-Blackwell Theorem (Lehmann, 1983, Thm. 1.4.6). However, the efficiency 

arguments require knowledge of the distribution, and MOM does not use such specific 

information.

The Generalized Method of Moments (GMM) was developed by Hansen (1982). 

Given statistical functionals of the sample and the unknown parameters such that

Ee{h(y,0)} = 0

the sample analogs of the expectations are solved for 8. For a given sample, the 

system of analog equations may not have a solution, and 9 is selected to minimize 

the norm of the residual vector, \\h(y, #)||. The GMM approach is one member of the 

family of M-estimators devised by Huber (1981).

The class of GMM estimators includes many familiar ‘minimum distance’ tech­

niques as special cases (e.g. classic MOM and LS). Recent advances in estimation the­

ory and in computing power have renewed interest in the concept of ‘moment match­

ing’, especially among economists who use models characterized by ‘orthogonality’ 

conditions (e.g. FOC or IV relations). If the moment or orthogonality equations are
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complex functions of the sample and the unknown parameters, standard distribution 

theory may not provide a likelihood basis for solving the problem. GMM estimators 

are typically consistent and asymptotically normal, and they may be asymptotically 

efficient under an appropriately weighted objective norm.

Although GMM does not require distributional assumptions, efficiency and other 

properties of the estimator may be improved if such information is available. The 

GMM estimates are not guaranteed to be theoretically plausible (admissible), and 

this is often cited as a principle drawback. As in the ML case, prior information 

about (3 may be used to restrict the relevant parameter space, but the moment-based 

approach may be difficult to employ if prior information is more complex. Extensions 

of the analog principles axe explored by Manski (1988), and recent attem pts to use 

moments in a Bayesian framework have been explored by Zellner (1994).

1.2.3 Regularization M ethods

As stated at the beginning of the chapter, regularity conditions may be used to 

derive unique solutions for otherwise ill-posed problems. The conditions may reflect 

subjective or other prior information, dual objectives for the recovered information, 

or merely convenient assumptions. Tikhonov (Tikhonov and Arsenin, 1977) formal­

ized the regularization concept for a family of techniques known as the Method of 

Regularization (MOR).

In general, the MOR objective reflects the fidelity of the recovered system to the 

indirect observations and to the regularity conditions. Formally, the general MOR 

objective may written as

(MOR) C =  ||m(y,/?)|| +  ti<j>(f3)

where m{y,(3) follows from Equation (1.1), || • || is some norm on y  and </>(•) is a 

penalty function that reflects information about the plausible values of (3. The trade­

off between the components of the regularization objective is provided by 77.

For the GLM, a familiar example is the ridge regressor (Judge, Hill, Griffiths,
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Lutkepohl and Lee, 1988, Section 21.4.3) which chooses (3 to minimize

C = ( y - X ( 3 y ( y - X ( 3 )  + g(3rC(3

Here, the quadratic regularization (QR) problem penalizes parameter vectors that 

have a large weighted Euclidean norm, f3'C/3, where C is a positive semi-definite 

m atrix of weights. The ridge or smoothing parameter, rj, establishes the trade-off 

between the squared-error objective and the penalty function. As rj —¥ 0 , f3 —>■ (3isi 

and [3 0  as g —»■ oo. Another familiar technique in the MOR family is the cubic

spline smoother used in non-param etric regression (Hardle, 1990). The cubic spline 

rule minimizes the MOR objective

£  =  (y -  9(X)) ' (y  -  g{X))  + g j  [g"{x)]2 dx

among the set of twice continuously differentiable functions, g £ C 2.

The regularization techniques are very flexible and may be used to extend a variety 

of existing methods. In effect, Bayesian inference is a form of regularization tha t uses 

Bayes Rule to form the trade-off between sample and prior information. If the penalty 

function is an alternate loss function on the parameter space (e.g. squared-error 

loss), the MOR objective provides a ‘dual-loss’ criterion for information recovery. 

For example, Zellner (1991) derives a family of estimators under dual quadratic loss 

functions.

1.2.4 Summary o f Traditional M ethods

The traditional methods of information recovery provide a variety of plausible 

approaches in cases where the sample information is well-defined and well-behaved. 

However, difficulties typically arise if the available information is limited, partial, or 

incomplete, and such cases are frequently encountered in practice. Although regu­

larization methods may employ prior information to solve the inverse problem, the 

techniques are often motivated by convenience rather than fidelity to the prior knowl­

edge. For these reasons, it is useful to consider alternate methods designed to solve 

inverse problems given limited information.
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1.3 Inform ation T heoretic A lternatives

After WWII, information theory evolved from wartime research on the increasingly 

im portant problems of sending and receiving coded messages over noisy communca- 

tion channels. Information theory is one basis for research in the fields of computer 

science and electrical and electronic engineering. It has also been used in a variety 

of disciplines to recover information about an unobserved signal from noisy, indirect 

observations.

1.3.1 Shannon’s Entropy

Shannon’s entropy measures the degree of uncertainty expressed in a probability 

distribution for a random event. If there are K  possible outcomes for the event and 

Pi is the probability of observing outcome i, the entropy of the distribution is

(1.7) H(p) = -J2p i log{p i )
i=i

Assuming 0 • log(O) =  0, H(p) = 0 for a degenerate probability distribution (pi =  1 

for some i), and H(p) = log(K)  when p is discrete uniform . 1 Thus, entropy measures 

uncertainty by taking a value of zero when the outcome is certain (least uncertain) 

and achieving a maximum for the most uncertain distribution.

Conceptually, information reduces uncertainty, and entropy measures uncertainty 

by accounting for expected or missing information about the event. In fact, Theil 

(1971, p. 25) notes that uncertainty and expected information should be viewed as 

dual concepts. To demonstrate the notion of expected information, consider a single 

Bernoulli trial with success probability p >  0. Let the trial be a single baseball season, 

and suppose we observe a success if the Chicago Cubs win the World Series. If p is 

very small, we would be ‘infinitely shocked’ a postieri to observe a success (i.e. the 

Cubs won the World Series). Alternately, we would not be very surprised by a success 

if p is close to 1 .

A lthou gh  the logarithm may take an arbitrary base, it is customary to use base-K logs to scale 
the range of H(p)  to [0,1]. For convenience, all logarithms used in this research will be natural 
logarithms.
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Note that — log(-) is one function that maps [0,1] to [0, oo] in this fashion. In 

the baseball example, a message tha t the Cubs won the World Series would yield an 

‘informational score’ of

- 1  • log(p) -  0  • log(l -  p) =  -log (p )

whereas a  loss would provide

- 0  • log(p) -  1 • log(l - p )  = -  log(l -  p)

A priori , our expected ‘information’ is simply

~P • log(p) -  (1 -  p) • log(l -  p) = H(p)

Although the — log(-) function seems rather arbitrary, it is justified by certain axioms 

of information theory (for a rough proof, see Theil (1967, p. 6 )).

To show that entropy also relates to missing information, note that there is no 

missing information if H(p) = 0; we know the outcome of the season with certainty 

(win or lose). If the Cubs’ prospects are equally likely (p =  0.5), H(p) peaks at 

log(2 ). In this case, we do not have any real information about the outcome of 

the season. Thus, the concepts of uncertainty, missing information, and expected 

information may be related through H(p).

A more general form of entropy was later introduced by Kullback (1959)

(1 .8 ) I{p, q) = Y , P i '  log ( —)
i'=i \9*'/

which is measure of the distance between distributions p and q? Kullback’s measure 

is called cross-entropy (Good, 1963), Kullback-Liebler directed divergence, or I -  

divergence in the statistics and information theory literature. Shannon’s entropy is a 

special case of I(p, q) because

(1.9) I{p,q) = Y^pilog(piK) = - H ( p )  + \og(K)
i

when q is a discrete uniform distribution.

2Assuming the support of p is a subset of the support of q
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Although I(p,q)  > 0  V p,q  and I{p,q)  =  0 if f  p = q, I{p,q) is not a true dis­

tance function. The commutative property, I(p,q) = I(q,p),  does not hold if p ^  q. 

However, I{p.,q) is known as a ‘directed’ divergence because it is a useful measure 

of uncertainty as we move with the flow of information. For example, suppose p is 

an observed frequency distribution for a set of independent trials with distribution 

q. Then, I{p,q)  is the ‘average’ information gathered from the observations. Alter­

nately, q may be a prior distribution with associated posterior distribution, p. In this 

case, I(p,q)  measures the additional sample information reflected in the posterior 

relative to the prior.

The entropy measures may be extended to distributions defined with respect to 

more general probability measures. By using the Riemann-Stieltjes integral

/log (p(x)/q(x))dP(x)
we can compute the cross-entropy of discrete, continuous, or mixture distributions. 

However, Georgescu-Roegen (1971, p.395) proves tha t Shannon’s entropy does not 

extend to continuous distributions. There are also more general forms of entropy that 

include H(p) and I(p,q)  as special cases — refer to Maasoumi (1993) for details.

Finally, it is im portant to note that informational entropy and physical entropy 

are distinct concepts. Reportedly, John von Neumann urged Shannon to name his 

measure entropy, and he cited two appealing reasons. First, the functional form of 

H(p) is similar to the entropy measures used in physics. Second, von Neumann ar­

gued that no one really understands the concept of entropy, and Shannon would enjoy 

a considerable advantage in future debates. Regardless of the tru th  in the reports, 

the damage is done and there has been a great deal of confusion about the relation­

ship between physical and informational entropy. For example, Georgescu-Roegen 

(1971) focuses on the physical nature of economic systems, but uses both versions of 

entropy throughout the text. Although conceptual links may be constructed, the two 

entropies are only related in cases for which the probability distribution is defined 

over macrostates in a thermodynamic system. Denbigh and Denbigh (1985) provide 

a good discussion of the conceptual differences and similarities.
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1.3.2 Jaynes’ Maximum Entropy Formalism

Some direct problems involve predicting discrete actions or choices based on a 

more complex, but unobserved system. In many cases, an image of the full system 

may not be required, and a probability distribution over the discrete set of outcomes 

may be sufficient to solve DP. If the indirect observations are sample moments for 

the discrete outcomes, these may be expressed as linear functions of the unknown 

probabilities. Then, the distribution may be recovered by solving the associated 

linear inverse problem. If the observations are limited and the inverse problem is 

ill-posed, the traditional methods of inference do not provide a basis for solving the 

problem.

Jaynes developed the Maximum Entropy (ME) formalism as a feasible means for 

solving ill-posed pure linear inverse problems for unknown probability distributions 

(Jaynes, 1957a; Jaynes, 1957b). The ME method selects the probability distribution 

that satisfies the observed information and uses as little extra information as possi­

ble. Given that Shannon’s entropy may be viewed as a measure of missing information, 

Jaynes suggested choosing the candidate distribution with maximum entropy. In his 

own words, the ME solution “agrees with what is known, but expresses ‘maximum 

uncertainty’ with respect to all other m atters” (Jaynes, 1985, p. 231). Thus, Jaynes 

uses the information criterion to regularize the ill-posed linear inverse problem and 

derive a unique solution.

Formally, let y be the vector of T  observed moments with associated supports, X .  

Then, the T  moments may be written as a function of the K  unknown probabilities, 

y = Xp ,  which a member of the GLM family. For example, if y\ is the average 

outcome, the first row of X  is the set of possible outcomes. If y2 is the average 

squared outcome, the second row of X  contains the set of squared outcomes. In any 

case, Jaynes’ ME solution selects p 0  to maximize

(ME) H{p) = ~ X !p « 1os(p«)
t=i
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subject to

(1.10) y = X p

(1 .1 1 ) 1 =  i'Kp

Typically, the constraints in Equation (1.10) are known as the model or consistency 

constraints, and Equation (1.11) is the additivity constraint required for all probability 

distributions. A formal solution to the problem is presented in the next chapter.

To demonstrate the ME approach, Jaynes devised a simple example known as the

dice problem. Suppose you are given a six-sided die and are asked to estimate the

probabilities for each possible outcome in the next roll of the die. The only information 

you are given is y , the average outcome from a large number of independent rolls of the 

die. Note that you are not given the observed frequency distribution of the sample, 

which is the MLE for a multinomial distribution. The problem is clearly ill-posed 

because there are six unknown probabilities, but only two pieces of information -  the 

six probabilities must sum to one and the mean of the distribution is y. Although 

Kolmogorov’s second SLLN (Spanos, 1986, p. 170) implies that the sample average 

will converge almost surely to the true mean of the distribution, there are an infinite 

number of distributions with a mean of y and supported on {1 , . . .  , 6 }.

As stated earlier, an ill-posed problem may become well-posed under additional 

regularity conditions. In the dice example, suppose we believe the die is ‘fair’ and 

has a discrete uniform distribution. If y = 3.5, the observed average matches the 

discrete uniform mean, and we would use the discrete uniform distribution. If y  ^  3.5, 

the underlying distribution is unlikely to be discrete uniform. However, it seems 

reasonable to select the most ‘uniform’ (uncertain) of the distributions with a mean 

of y. Jaynes uses Shannon’s entropy to measure uniformity, and the maximum entropy 

distribution is the most uniform distribution with a mean of y. Trivially, the discrete 

uniform distribution maximizes entropy and has a mean of y — 3.5. Thus, Jaynes 

uses the uniformity (uncertainty) assumption to regularize the dice problem.

Formally, the ME solution to the dice problem selects p to maximize

(1 .1 2 ) tf(p) =  - X > l o g ( p t)
i=i
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s u b j e c t  to

6

( 1 .13) =  y
«=l

(1.14) = 1
t ' = l

where X{ = i for each i =  1 , . . .  , 6 . The constraint set is non-empty if y  E (1,6), 

and H  is strictly concave in p. Thus, there is a unique, interior solution to the dice 

problem. Trivially, pi =  1 or p6 =  1 if V =  1 or y =  6 , respectively.

To calculate the interior ME solution, form the Lagrangian expression for the 

problem

(1.15) C = ~ Y j > i  log(p<) +  A (y  ~  +  7 ^1 -  Y^P^j

The associated first-order conditions (FOC) are

(1.16) =  - 1  -  log (pt) -  XiX - 7  =  0  V i
dpi
Qf\ 6

(1.17) =  J / - E A * i  =  0

(1.18) |  = 1 - g f t - O

By solving the FOC, we find that the ME probability distribution places weight

exp(—XiX) exp(— XiX)
(1.19) pi = —  — = --------- s------

Y f ^ e x p i - X j X )  n(A)

on the i th outcome. Clearly, the ME probabihties are admissible because p 0 and 

Equation (1 .1 1 ) is satisfied. However, f>i is a function of A, the Lagrange multiplier on 

the model constraint in Equation (1.10). Thus, the Maximum Entropy distribution 

does not have a closed-form solution, and the problem must be solved numerically. For

various values of y, the ME solutions to the dice problem are presented in Table 1.1.

The analytical and computational properties of the ME problem are discussed in 

greater detail in Chapter 2.

A dice-like problem has recently appeared statistics literature on bootstrapping, 

and an example is presented in Section 23.7 of Efron and Tibsliirani (1993). For a
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given sample, { X i,. . .  , X t }, the empirical mass function is constucted by placing a 

weight of T - 1  on each observation. A variety of estimators and tests may be com-

distribution that reflects the mean under the alternate hypothesis may be required. 

The alternate distribution must be constructed by shifting mass among the obser­

vations, and Efron and Tibshirani note that ME is one basis for recovering such a

uniform distribution, q. The problem may then be solved under the cross-entropy 

(CE) formalism. CE regularizes the problem by selecting the distribution, p , that 

has a mean of y  and minimizes the Kullback-Liebler directed divergence, I(p, q), 

between p and q. Intuitively, the CE distribution satisfies the observed information 

and is ‘closest’ to our prior beliefs. Alternately, the CE distribution minimizes the 

additional information reflected in p relative to q.

Formally, the CE method selects p to minimize Equation (1 .8 ) subject to the 

previous constraint set, Equations (1 .1 0 ) and (1.11). If the constraint set is non­

empty, there is a unique interior solution to the problem because I(p,q)  is strictly 

convex in p. The CE probabilities for the dice problem are

puted by resampling from the empirical distribution. If the bootstrap procedure is 

used to compute a test statistic based on the mean of the distribution, an empirical

distribution. The ME solution is the distribution that is ‘closest’ to the empirical 

mass function, yet reflects the alternate hypothesis.

1.3.3 The Minimum Cross-Entropy Formalism

In the dice problem, suppose we believe that the die is not fair and has some non

( 1 .20 )

where

( 1.21 ) =  I ]  9n exp(X„A)
71

As before, A is the Lagrange multiplier on the model constraint, Equation(l.lO). Re­

call that I{p,q) = —H{p) -flog (A') if q is discrete uniform. In this case, the minimum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CH APTER 1. INVERSE PROBLEMS AND INFORM ATION RE C O V ERY 21

cross-entropy and the maximum entropy problems are equivalent, and ME may be 

viewed as a special case of CE.

The ME solution to the dice problem may be related to broader family of proba­

bility distributions with mass function

q(x)ex v ( x \ )
(1 .2 2 ) »< «■ «> - n r o

for A £ !R and x £ {1 , . . .  , 6 }. p\(x,  q) is a generalized version of the Maxwell- 

Boltzmann distribution (Rao, 1973, p. 173), which is a member of the univariate 

canonical exponential family

(1.23) p(x, 8) =  h(x) • exp [#f (r) — c{8)\

where h(x) = q(x), 8 =  A, t(x) = x, and c(8) — log [0(A)]. The natural parameter 

space is A =  Sft, and the canonical family is full rank (trivially).

The ME distribution, p-x(x,q): is one member of the Maxwell-Boltzmann family, 

and the properties of the canonical exponential family may be used to evaluate the 

ME solution. In particular, the information m atrix of px(x,q)  is

(1.24) 7(A) =  -B „ [p ? (x ,5)]

= t,PiXf - (’E piX,
i=l \t'=l

which is strictly positive for an interior solution. Given that the moments of px(x,q) 

match the observed moments, the moment generating function (Bickel and Doksum, 

1977, Theorem 2.3.2)

(1.25) H(s) = exp[c(0 +  s) — c(#)]

fi(A +  s) 
fi(A)

may be viewed as the empirical m.g.f. These properties may be extended to ME and 

CE solutions to other linear inverse problems.

=  Var-X(x)
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1.3.4 Pros and Cons o f M aximum Entropy

Other criteria may be used to regularize ill-posed problems like the dice exam­

ple. For example, one could minimize the distance between p and q under Euclidean 

or other norms. Jaynes argued tha t the ME solution is analogous to the frequency 

distribution that could be generated in the largest number of ways and is consistent 

with the observed information. To see this, consider Boltzmann’s derivation of the 

Maxwell-Boltzmann distribution. Let pi =  n,-//V be the freqency distribution for N  

independent trials with I\ possible outcomes. The number of ways of observing a 

particular distribution is given by the multinomial coefficient

N\
(1.26) FF =  — ----------

n x\ . . . n K\
Given the logarithmic version of Stirling’s approximation,

(1.27) log(n!) «  [n + 0.5] log(re) — n
Li

oc nlog(n) — n 

the (monotonic) log-transform of W  is

(1.28) log(FF) =  log(AT!) -  f > !
t=i

K  K

«  Nlog(N)  -  N  -  ^ 2  n i log(n t) +  ni
t'=l 1=1

=  - X ^ n t [log(nt)-log(AT)]
t=i

which imphes that the average log-multiplicity is

(1.29) iV lo g fW )  =  - E ( ^ ) los ( ^ )

I<
=  ~ Y 1  Pi log (Pi)

= H(p)

Thus, Shannon’s entropy is asymptotically proportional to the multinomial coefficient, 

and the ME distribution may be associated with the ‘most likely’ (ML) frequency 

distribution.
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Jaynes’ further asserted that Shannon’s entropy is the only objective that provides 

an image of the underlying system that is consistent with the observations. A por­

tion of the assertion was proved by Khinchin (Theil, 1967). Later, Shore and Johnson 

(1980) and Tikocliinsky, Tishby and Levine (1984) independently proved Jaynes’ full 

proposition using axioms of information theory. A brief review of the axiomatic ap­

proach is provided by Skilling (1988), and a sketch of the proofs is presented by Theil 

(1967).

Critics readily point out the principle limitations of ME -  it is only designed 

for pure inverse problems in which the unknowns axe probabilities. By dropping the 

additivity constraint, Donoho, Johnstone, Hoch and Stern (1992) show tha t H(p) 

may be used as an MOR penalty function to solve inverse problems with noise for 

P e  9i£. Although this approach has been used in many signal recovery problems 

throughout the physical and social sciences, it does not extend to problems with 

negative unknown parameters. Lacking a more general formulation, the ME and CE 

formalisms have not been widely accepted as means of information recovery.

1.4 P urpose and O bjectives o f th e  D issertation

In summary, the traditional methods of information recovery provide a variety of 

bases for solving inverse problems. Although many well-posed experimental designs 

may fit at least one of the alternates, difficulties arise in ill-posed or ill-conditioned 

problems. If prior economic knowledge exists, it may be used to augment the lim­

ited indirect observations or to regularize the inverse problems. Unfortunately, the 

traditional methods generally require different types of information and may not ac­

comodate the available information. Consequently, researchers often employ creative 

or simplifying assumptions to solve economic inverse problems within the traditional 

framework.

Despite the cited drawbacks, the entropy formalisms are an attractive means of 

information recovery. By using the available indirect observations and prior informa­

tion, economists may use the entropy approach to solve inverse problems without ad­

ditional or unnatural assumptions. These motives prompted Judge and Golan (1992)
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to extend the original entropy framework to a generalized entropy formalism. The 

Generalized Maximum Entropy and Generalized Cross-Entropy problems account for 

the disturbances and real-valued parameters commonly found in economic models, 

and the solutions agree with the sample information and reflect the prior knowledge.

The purpose of the dissertation is to examine proposed extensions of the entropy 

formalism to inverse problems in economics. The objectives of the research are:

(i). to specify the generalized entropy formulations of the GLM,

(ii). to demonstrate the analytical and computational properties of the generalized 

entropy solutions, and

(iii). to examine the performance of the generalized entropy techniques in familiar 

cases of the GLM.

The generalized entropy methods for the GLM are specified and the m athemati­

cal and statistical properties of the inverse problems are presented in the next chap­

ter. Using limited Monte Carlo evidence, the performance of the proposed methods are 

demonstrated in Chapter 3. Finally, a summary of the research, conclusions about 

the generalized entropy methods, and some additional extensions are discussed in 

Chapter 4.
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y Pi P2 P3 Pa Ps Pe H(p)
1 .0 1 .0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 .0 0 0 0 . 0 0 0 0 . 0 0 0

1.5 0.664 0.224 0.075 0.025 0.009 0.003 0.953
2 . 0 0.478 0.255 0.136 0.072 0.038 0 . 0 2 1 1.367
2.5 0.348 0.240 0.165 0.114 0.079 0.054 1.614
3.0 0.247 0.207 0.174 0.146 0.123 0.103 1.748
3.5 0.167 0.167 0.167 0.167 0.167 0.167 1.792
4.0 0.103 0.123 0.146 0.174 0.207 0.247 1.748
4.5 0.054 0.079 0.114 0.165 0.240 0.348 1.614
5.0 0 . 0 2 1 0.038 0.072 0.136 0.255 0.478 1.367
5.5 0.003 0.009 0.025 0.075 0.224 0.664 0.953
6 .0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 1 .0 0 0 0 .0 0 0

Table 1.1: ME Solution to the Dice Problem for Various y
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2.1 T he G M E -G C E  Framework

As stated in Chapter 1, the information theoretic basis for solving economic in­

verse problems is attractive due to the limitations of the indirect observations and 

the presence of prior information. However, most economic inverse problems include 

a noise component, and many of the unknown parameters may take on real val­

ues. Consequently, the entropy formalisms ar e not directly applicable to cases such as 

the GLM. Judge and Golan (1992) extended the ME formalism to handle real-valued 

unknowns in linear inverse problems with noise by reformulating the GLM in terms 

of unknown probability distributions.

Assume B may be represented by a compact hyperrectangle, Z  C 5RA. If Zk\ and 

Zk2 are the extreme possible values of /?*, there exists pk £ [0 , 1 ] such that

(2-1) Pk =  PkZki +  (1 — Pk)Zk2

In general, let Zk be a set of M  >  2 points that span the k ih dimension of Z ,  and let 

P k  be the associated M-vector of weights on these points. Then, any P £ in t(£ ) may 

be expressed as

looI

Pi

(2.2) p  = Zp =
0  Z 2 • 0 P2

1

00
1 PI<

where Z  is a (K  x I \ M )  matrix and p is a A 'M -vector of weights such that pk 0 

and p'kiM = 1 for each k.

Prior information about the unknowns may be expressed as a set of subjective 

probability distributions over Z.  If the prior weights are q, the prior mean of the 

par ameters is Zq. For example, let Pi be an elasticity of supply. Suppose we believe 

Pi £ [0,4], and our prior expectation is Pi = 1 . Then, Z n  = 0  and Z u  =  4 may 

be used as supports on pi,  and the prior distribution may be q — [0.75,0.25]. The 

number of support points for each parameter, M, may be increased to reflect the 

available prior information.
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The disturbances may be treated in a similar fashion. Suppose there exist sets 

of error bounds, Vt\ and Vt2, for each et so that Pr[Vtl <  et < Vl2\ may be made 

arbitrarily small. W ith positive probability, each disturbance may be written as

(2.3) et = wtVn + (1 -  wt)Vtt2

for some wt E (0,1). Typically, Vt\ and Vt2 will be symmetric about zero. However, 

J  > 2  points may be used to express or recover additional information about et (e.g. 

skewness). The T  unknown disturbances may be written as

’  Vx 0 0 W!

(2.4) e =  Vw  =
0 V2 0 w2

0 0

£

w t

w h e r e  V  is  a  (T X T J )  m a t r ix  a n d  w is  a  T . / - v e c t o r  o f  w e ig h ts  s u c h  t h a t  w 0 a n d  

w'ti j  =  1 fo r  e a c h  t.

By defining j3 = Zp  and e — Vw,  Judge and Golan rewrite the general linear 

model as

(2.5) y =  X(3 +  e =  X Z p  + Vw

Given Z  and V, the Generalized Maximum Entropy (GME) solution to the linear 

inverse problem with noise selects p, w 0  to maximize

(2 .6 )

subject to

(2.7)

(2 .8 )

(2.9)

H(p,w) = —p'log(p) — u/log(to)

y = X  Zp  +  Vw  

i k  =  ( I k  <S> i 'm ) ?  

i t  =  ( I t  ®  l ' j )w

where Equation (2.7) is the model constraint, and Equations (2.8) and (2.9) provide 

the additivity constraints. The optimal probability vector, p , may be used to form a 

point estimate of the unknown param eter vector, (3 = Zp.
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Analogous to Jaynes’ explanation of Maximum Entropy, GME selects weights for 

the elements of Z  and V  that are most ‘uncertain’ and satisfy the observed informa­

tion. Given informative prior distributions on Z  and V, q and u, the cross-entropy 

criterion may be used to form the Generalized Cross Entropy (GCE) problem. The 

GCE solution is the set of weights, p  and w, that are ‘closest’ to the prior weights and 

satisfy the observations. Conseqently, generalized entropy may be viewed as a form 

of minimum distance or GMM estimation. However, the observations are used as 

constraints, and GME-GCE can solve traditionally ill-posed inverse problems. Fur­

ther, the method requires very little information about the noise process, and prior 

information about the unknown parameters may be included.

A large number of models may be written in the GLM form

(2 .1 0 ) a = TP + e

where the associated generic GCE formulation is

(2 .1 1 ) a  =  TZp  +  Vw

A list of the familiar special cases of the generic GLM is presented in Table 2 .1 . 

The suffices D, M, IV, and NM denote the data, moment, instrumental variable, and 

normed-moment formulations. The table also includes the associated GME problems, 

which are special cases of the GCE problems when q and u are discrete uniform 

distributions. For example, classical ME problems such as the dice example are a

Model a T e
CE y X 0

GCE-D y X e
GCE-M X 'v X ' X X 'e
GCE-IV P'y P 'X P'e

GCE-NM m w
Table 2 .1 : Cases of the Generic GCE Problem

special cases of the CE model — y is the observed mean, X  is the support of the die, 

and the noise term is excluded.
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The formal solution to the generic GCE problem is presented in the next sec­

tion. As in the M E-CE formulation, the GCE objective is strictly convex on the 

interior of the additivity constraint set, and a solution exists if the intersection of the 

consistency and additivity constraint sets is non-empty. As we shall see, the generic 

GCE probabilities are

A _  qtm exp(Zfcmr[.A)
(2 .1 2 ) pkm —

where
M

(2.13) n fc(A) =  ]T  qkn exp(Zfcnr'fcA)
71=  1

The GCE problem does not have a closed-form solution, and the solution must be 

computed numerically.

Although f3 6  Z  is the same for each version of the generic GCE problem, the 

choice of V  clearly depend on the properties of e. Chebychev’s Inequality may be used 

as a conservative means of specifying sets of error bounds. For any random variable, 

e, such that E(e) = 0  and Var(e) =  o’2, the inequality provides

(2.14) P r[ |e| < va\ >  v~2

for arbitrary v > 0. Given some excluded tail probability, v~2, the extreme error 

bounds will be Vn = —vcr and Vtj  =  va.  An example is the familiar 3-<r rule which 

excludes at most one-ninth of the mass for v — 3. If the e has a unimodal Lebesgue 

density, the 3-ct rule excludes at most 5% of the tails. Pukelslieim (1994) provides a 

recent discussion of probability bounds and the 3-<r rule.

Suppose the elements of X  are bounded and the GLM disturbances, {ef}, are 

white noise disturbances with unit variance. In the GCE-M model, the variance of 

e, is of =  X[Xi,  and o-,- =  0 ( \ / T ) .  In the GCE-NM case,

1
cr, =  O  , _

\ V t

Consequently, the elements of V  should reflect the variation (e.g. variance, support) 

of the underlying errors and may be a function of T.
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An alternate version of the GCE formulation may be used if probability bounds 

are unattainable or inappropriate for a  given inverse problem. Given support Z  and 

prior q, choose p to minimize

(2.15) C = \\y -  XZp\\ +ql{p ,q)

where || • || is some norm on y  and I(p, q) is used as a penalty function. The objective 

function is clearly a member of the MOR class, and it may be viewed as a modified 

version of the entropy-penalized objective discussed by Donoho et al. (1992). Al­

though this formulation avoids error bounds, the optimal probabilities do not take 

a closed-form (even as a function of the Lagrange muultipliers), and the researcher 

must choose the smoothing parameter, 77, and the objective norm. The alternate 

formulation is not consistent with the generalized entropy framework and is only 

presented here for completeness.

2.2 Solving th e  G eneric GCE P roblem

The generic GCE problem selects p, w 0 to minimize

(2.16) I (p ,w ,q ,u )  = p'log(p/q) + w'log(w/u)

subject to

(2.17) a  =  T Zp + Vw

(2.18) ik  =  (Ik  <8 > i'M)P

it  =  ( /T <g> i'j)w

Note that the additivity constraint set (2.18) is composed of K  unit simplices of

dimension M  > 2  and T  unit simplices of dimension J  > 2 .  Denote these simplices

as S m  and S j, respectively, so tha t the additivity constraint set (2.18) is A  = Sfo x 

S j .  Clearly, A  is a non-empty and compact set. The model constraint set (2.17) 

further restricts A  to those probabilities that are ‘consistent’ with the data. Let the 

fully restricted constraint set be

(2.19) A* =  {(p, u>) G int(.A) : a  = TZp + Vw]
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To verify the uniqueness of the solution, note that the Hessian matrix of the 

objective function is

" p-1 0
0  w - 1

where P - 1  is a ( K M  x K M )  diagonal matrix with elements p(^,  and W ~ l is a 

( T J  x T J )  diagonal m atrix with elements w ^1. The matrix is positive definite for 

p, iu 0, which satisfies the sufficient condition for strict convexity. So, there is a 

unique global minimum (GM) for the problem if A* ^  0.

To find the interior solution, form the Lagrangean equation

£  =  I(p,w)  +  A'[a -  TZ p - V w ]  + 7 '[iK -  (IK <8 > i'M)p\ +  r'[iT -  (IT ® i'j)w)

where A £ 7  G 9iA, and r  £ 5RT are the associated Lagrange multipliers. Taking

the gradient of £  to derive the first-order conditions (FOC), we have

(2 .2 1 ) V P£  =  «A'M +  log(p/q) -  Z'V'X -  (IK ® i m )i  =  0

(2 .2 2 ) =  1t j  +  log(u)/u) -  V'X -  (IT <8 > i j ) t  -  0

(2.23) =  a - T Z p - V w  = 0

(2.24) S7j£ =  ik (Ik  ® *m)p =  0

(2.25) Vt>C =  it — (It  © =  0

Solving Equations (2.21) and (2.22) for p and to, respectively,

(2.26) p = qQ  exp(ZT'A) 0 exp[-tK-M +  (Ik © *m)t]

(2.27) to =  u © exp(F'A) © exp[—itj +  (It  © *j)f]

Considering just pk, the distribution for (3k, note that the term

exp[—U-m +  (Ik  © iM)lk\

is the same for all m.  So, pkm oc qkm © exp(Zfcmr'fcA) for all m  of each k. Then, the 

additivity constraints can be satisfied by using the sum of the m  kernels to normalize 

each pkm• A similar normalization factor may be derived for to.

More formally, substitute Equations (2.26) and (2.27) into Equations (2.24) and

(2.25), respectively. Considering just p, the normalization factor may be identified by
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further premultiplication

(2.28) (Ik © im)ii< = (Ik © im)(Ik © i'm)P 

ikm = (Ik © Jm)p

ikm — (Ik © Jm)[<1 © exp(Z'r'A)

© exp( - i k m  +  (Ik © 1m)i)\  

ikm  — {(Ik © Jm)[q © exp(Z T /A)]}

Qexp(-iKM + (Ik © *m)7)

By inverting the bracketed term, the result may be rewritten as

(2.29) exp(—ikm +  (Ik © *m)t) = {(̂ A' x Jm)[qQ exp(ZT'A)]} 1 

and by substitution into Equation (2.26)

(2.30) p = q® exp(ZT'A) 0  {(Ik © Jm)[<1 © exp(ZT'A ) ] } - 1

The individual probabilities take the form

where is the kth column of T, and

(2.32) t t k W  =  exp(Zknr'kX)
n

is the partition function (normalization). In similar fashion, the vector of optimal 

noise probabilities is

(2.33) w = u 0  exp(y'A) 0  {(It © Jj)[u © exp(V'A)]} 1

with individual elements

(2.34)
exp(VtjA)

The partition function for w is

(2.35) =  ^w<nexp(14nA<)
n
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Clearly, the GCE solutions, p and w, satisfy the additivity constraints (2.18) and 

are strictly positive. However, the GCE solution depends on the Lagrange multipliers 

for the model constraints, A. The only remaining information in the FOC is the set 

of model constraints (2.17), which are not a function of A. Hence, there is no known 

closed-form solution to the GCE or GME problems, as in Jaynes’ dice problem. The 

GCE solution must be found numerically, and an efficient computing algorithm is 

presented in the next section.

2.3 C om puting th e  N um erical Solution

Although computing power is no longer a serious limitation to empirical research, 

there are clear advantages to using efficient techniques tha t may be employed in a 

broad set of computing environments. The purpose of this section is to specify the 

‘dual’ version of the generic GCE problem and solve it with simpler and more widely 

available unconstrained numerical techniques. As we shall see, the dual formulation 

is also a valuable tool for evaluating the properties of the GCE solution.

2.3.1 Minimal Value Function

For arbitrary A £ S A, let p(A) and w(X) represent the functional form of the 

optimal GCE probabilities, Equations (2.30) and (2.33). Then, substitute these into 

the original Lagrangean expression to form the minimal value function. Note that the 

optimal probabilities satisfy the additivity constraints V A G 9?T, and the associated 

term  may be dropped from £  to yield

(2.36) £(A) =  p(A)'log(p(A)) +  m(A)'log(u;(A)) + A'[a — TZp(X) — Vu;(A)]

=  p(Xy[Z’T'X -  log(fi(A))] +  w(X)'[V'X -  log(*(A))]

+ [a ' -  p{X)'Z'T' -  u;(A)'V']A 

=  a'A -  p(A)'log(J7(A)) -  «;(A)'log(¥(A))

=  a'A -  2 > g ( S l t (A)) -  £ log (*«(A )) =  M(A)
k t
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In many optimization problems, the minimal value function is used to evaluate the 

optimal objective function I(p ,w)  given alternate values of the constants (e.g Z  or 

V).  W ithout a closed-form solution for p and w, the GCE minimal value function does 

not have a closed-form. However, the saddle-point properties of the GCE problem 

may be used to find A by solving an unconstrained problem.

2.3.2 Saddle-point Properties and the Dual Problem

The ability to recover A from an unconstrained optimization problem follows from 

the next result.

P ro p o s itio n  2 . 1  I f  A* ^  0, the optimal solution to the GCE problem, (p, w, \ ) ,  

satifies the saddle-point (SP) property:

£(p, w, A) > £(p, w,  A) > £Q3, w, A)

Proof: If A* 0, the strict convexity of I(p,w)  ensures that the GCE problem has a 

unique GM, (p, w, A). Clearly, a GM is also a local minimum (LM). The linearity of the 

constraint set defined by Equations (2.17) and (2.18) satisfies the second condition 

of the Arrow-Hurwicz-Uzawa Constraint Qualification (Takayama, 1985, Theorem

1.D.4), and the LM is also a quasi-saddle-point (QSP) by the Kuhn-Tucker Theorem 

(Takayama, 1985, Theorem 1.D.3). Finally, the linearity (hence concavity) of the 

constraints satisfies result (ii) of Theorem l.D .l in Takayama (1985). Therefore, the 

unique GM for the GCE problem also satisfies SP. □

In terms of M(A), SP implies

(2.37) M(A) <  M(A) V A <E

Further, the inequality is strict because M  is a strictly concave function of A. To see 

this, note that the gradient of the dual problem is

(2.38) VaAT(A) — a  — TZp(X)  — V w ( \ )
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which is simply the model constraint from the generic GCE problem. The Hessian 

m atrix of M(A) is

(2.39) Vxx’M ( A) =  - r Z  v v  p(A) -  V  Va' w (X) 

= - r s z (A)r' -  Ev(A)

where Ez(A) and Ey (A) are the variance-covariance matrices for distributions p(A) 

and m(A).

By the sufficient condition for strict concavity, it suffices to show that X J w M (A) is 

a negative definite matrix. To evaluate the Hessian matrix, note that the t ih equation 

in V a M ( A )  is

(2.40) a t -  r tZp(X) — Vtwt{X)

The second-partial derivative of this equation with respect to As is

(2.41)  ̂ p Y '' 7  d p k m ( x )  ^  Y '  V  d w t](Xt)

dXsd X t ~  V  m km dX* 4 tj dX«

where

(2.42) 

and

(2.43)

Finally, note that

(2.44)

(2.45)

which implies

(2.46)

dpkm(X)
dX„

= Tsk EfcmPkm Pkm ^   ̂Z knPkn

dW t j (X t )  _  j  VtjWtj  ~  W t j T . n V t n W t n  S = t 

\  0  s ^ tdXs

2
kmaZk ~ ^PkmZl

m

°vt =

km

d2M  „  2 2

d X M t ~ ~ ^  ih sk<7Zk- aV‘
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For any interior solution, (p ,w ), each of these variance terms is strictly positive, and 

£ z  and Ey  are positive definite matrices.

Assembled in m atrix form, these second-partials take the form of Equation (2.39). 

Although TSzrT' is positive semi-definite when T  > K ,  'Ey is a positive definite 

matrix. Hence, -f Ey  is positive definite, and (2.39) is a negative definite

matrix. Therefore, M ( \ )  is strictly concave in A, and choosing A to maximize M ( A) 

will yield the unique solution, A. Under the dual formulation, the GCE solution may 

be computed with simpler unconstrained techniques.

2.3.3 A Simple Computer Algorithm

1. Specify the vector of starting values; A0 =  0 yields (3 equal to its prior mean 

and is often a good choice.

2. Check for a feasible solution:

(a) The eigenvalues of V a a ' M ( A ° )  must be strictly positive for some A*, which 

should be near A0.

(b) Use a search algorithm on the parameter space (primal or dual); an exam­

ple is the linear programming subroutine suggested by Agmon, Alhassid 

and Levine (1979).

3. Form M (A) as in Equation (2.36):

(a) Proceed with a derivative-free optimization method (e.g. downhill simplex 

of Nelder and Mead).

(b) Form s j \ M ( A) as in Equation (2.38) and use a gradient-based method.

(c) Also form V a a ' - M ( A )  as in Equation (2.39) to capture second-order im­

provements in the convergence rate.

4. Use A to compute p(A) and = Zp(A) as well as w(A), e =  Vw (A), or 

I{p ,w,q,u) .
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The Agmon et al. (1979) algorithm is a popular means for solving classical ME-CE 

problems, and it is a special case of the present algorithm. To see this, set e =  0 and 

solve the pure linear inverse problem where K  = 1, X Z \ m = X m, and (3 =  p. Other 

approaches to computing the solutions to pure inverse problems are summarized by 

Shore and Johnson (1981). Based on a limited number of trials, the computing time 

for the dual formulation is roughly 35% less than for the constrained (primal) problem.

2.4 Sam pling P roperties o f th e  G CE Solution

As explained in Chapter 1, the entropy-based methods of information recovery 

are not directly motivated by standard sampling theory. However, large- and small- 

sample properties have been used to compare competing estimators. For example, 

researchers may compute the bias of a Bayesian point estimator. Although the GCE 

solution does not have a closed-form, the dual formulation of the GCE problem 

may be used to evaluate the behavior of the solutions within the extremum or M- 

estimation framework developed by Huber (1981).

2.4.1 A sym ptotic Behavior

The model constraints used in Jaynes’ classical ME problems were implicitly as­

sumed to be consistent sample moments with negligible noise components. As T  

increases, the model constraint converges almost surely, and the M E-CE problem is 

asymptotically non-stochastic. Although the GCE-D version of the GLM does not 

fit this pattern, large-sample properties for GCE-NM problem may be derived.

For the purpose of the following analysis, define the GCE-NM model as

(2.47) min I{p ,q ,w,u) = p'log{p/q) + w'log{w/u)
p, XU

subject to

x 'y  f x 'x \  „(2.48) —  =  f ~y ~ ) Zp  +  Vw

(2.49) in  =  {Ik  8> 1m )p

(2.50) iK =  {IK 8) i'j)w
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where V  is now a (I\ x  K J )  matrix tha t specifies the support of the K -vector of 

residuals. Based on the results from the preceding section, the dual formulation of 

the problem is

(2.51) max MT( A) =  X + E loS i ^ ( X)] +  E loS I'M *)]

where A G and the partition functions are

(2.52) fifc =  E ^ n eXp ( ^ n ( ^ ) A ^ )

(2.53) 'J'fc =  E U*«eXP ( VknXk)
n

As we shall see, the GCE-NM solution is consistent under the following assump­

tions:

(A l) (3 G in t(Z)

(A2) There exists a finite, positive definite matrix Q such that

( X '  X \  „
' r \ - T r )  = Q

(A3) E(e) = 0 , Var(e) =  E e, and F(e) satisfies the Lindeberg condition (Billingsley, 

1986, Eq. 27.8)

r - 1 E  /  IH W e ) -> 0
< = i J £

where £  = {e : ||e|| >  e \ /T }  for e > 0 .

(A4) The variance-covariance m atrix of e =  X ,e { \ jT  converges to a finite, positive 

definite m atrix

The Cliebychev and 3-cr rules provide error bounds that are proportional to the 

underlying standard error of the disturbances. Under the preceding assumptions, 

e /y /T  A  0 . Accordingly, the error bounds used in the GCE-NM problem should 

collapse on 0 as T  increases. In the present discussion, we will consider V  = 0 (  ~y/T), 

but the rate of convergence will be altered later.

Before proceeding, define the following items:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 2. GENERALIZED E N T R O P Y  APPROACH 40

(D l) Aq £ 9iA is uniquely and implicitly defined as (3 = Zp(Xo) for some (3 £ int(-Z).

(D2) A C 3?A' is an open neighborhood of Ao.

(D3) A is the topological closure of A.

(D4) M j ( A) is the GCE-NM dual objective function (refer to Equation (2.36)) for 

sample size T.

(D6 ) Pt =  Zp(Xr)

(D7) Z a is the range of Zp(A) for all A £ A.

(D8 ) is the range of QZp(X)  for all A £ A.

Finally, consider three preliminary results that will be useful in demonstrating the 

large-sample properties of the GCE-NM solution. The first result relates the original

parameter space, fi, to the solution space for the dual formulation, A. The conceptual

basis for these operations is also used to derive large sample results for ML solutions 

in exponential families (Brown, 1986; Johansen, 1979).

L em m a 2 . 1  Zp{A) is a dijfeomorphism from A to Z \  for all sufficiently large T.

Proof: A diffeomorphism is a mapping from one set to another which is one-to-one, 

differentiable, and invertible in each direction. Let oj(X) = Zp(A), where uj : A —»■ Z a - 

To establish the local properties, note that the function is continuously differentiable 

with Jacobian matrix

as a special case of Equation (2.39). Note that for all sufficiently large T,  u / is positive

unique continuously differentiable inverse, p : Z a -> A, with Jacobian matrix

(D5) At  = max^gyy M j ( A), which exists for all T  by the Weierstrass Theorem.

(2.54)

definite for all A £ A by Assumption A2. By the Inverse Function Theorem, to has a

(2.55)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 2. GENERALIZED E N T R O P Y  APPROACH 41

which is also positive definite in large samples. Thus, p also satisfies the Inverse 

Function Theorem, and the local mapping is a diffeomorphism in large samples.

The global relation may be demonstrated by contradiction. Suppose there exists 

two vectors, A: A2 , such that

(2.56) f3 = Z P{ AO =  Zp( A2)

The equality holds for both distributions on Z,  so the analysis may be restricted to 

the probabilities. WLOG, let Ai =  0, and note that Zkm in each term in the denom­

inator does not cancel. Consequently, just consider the numerator of the individual 

probabilities

(2.57) qkm exp | 'Zkm j  ^ 2  j  =  exp(0)

This only holds for A2 7  ̂ 0 if X ' X  is rank deficient, which contradicts A2 in large 

samples. □

Lemma 2.2

KmPr =  0

Proof: By Assumption A4, E[X'e] — 0 V T, and

(2.58) lim Var =  0

So, T ~ xX 'e  converges (in quadratic mean) to a null vector, which implies T~lX 'e  A  0 

by Chebychev’s Inequality. □

Lemma 2.3

Proof: The result follows from Assumptions A3 and A4, and implicitly the Lindeberg- 

Feller CLT (Spanos, 1986, p. 177). □
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E x isten ce

The first step is to show that an interior solution to the GCE-NM problem exists 

for all sufficiently large sample sizes.

P ro p o s itio n  2.2 Under Assumptions A1-A3,

lim Pr G aJ =  1

for all sufficiently large T .

Proof : By Lemma 3.1, the event

is equivalent to the event of interest, At G A, in sufficiently large samples. Assumption 

A1 and Lemma 3.2 imply

/ x X ' y  ( X ' X \  a ( X 'e
(2.59) - /  =  ( - ) / » + ( - ? ■

4  Q0

by Slutsky’s Theorem. Definitions D1 and D8  further provide

(2.60) Qp = QZp{A0) G 3̂ a

Clearly,

l X 'V G 3̂ a1 =  1(2.61)
T

and the equivalence of the events proves the proposition. □  

C onsis ten cy

P ro p o s itio n  2.3 Under Assumptions A1-A3,

p l i m 0 T) =  P
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Proof: First, show tha t Ay 4  A0. To do this, evaluate the three sets of terms in the 

GCE-NM dual objective function, Equation (2.51). By Lemma 3.2,

(2.62) ( y X A 4  (3'Q'X

By Assumption A2 and Slutsky’s Theorem,

Zkn x i x  l x(2.63) fifc(A) =  ^ q ^ e x p
n

-> Y ^  eXP \ZknQ'kX\
n

Given V = 0( ~\/T). Slutsky’s Theorem implies

(2.64) *i(A) =
3

-»• Y  uv  exP [°1 = 1
j

By additional application of Slutsky’s Theorem, the three results may be combined 

to yield

(2.65) My(A) 4  P ' Q X - Y ^ g
k

= f3 ' QX-YH
k

=  Moo (A)

Y  <lkm exp (ZkmQ'f.X)
. m

)  , Qkm exp {ZkmQkX)

The limiting objective function, Moo(A), is non-stochastic, strictly concave in A, and 

has gradient

(2 .66 ) V xM(X) = Q (3-QZp(X)

By D l, A0 G A is the unique solution to the FOC for the limiting objective function. 

Further,

(2.67) lim Pr [Aq G <9(A)j =  0

by the existence result.

Given that My(A) is uniformly continuous in A for all T,  My (A) 4  Moo (A) nec-
• A «

essarily implies Ay —>• Ao- Further, Zp(A) is a continuous function of A, and Slutsky’s 

Theorem implies that Zp(Ay) 4  Zp(A0) =  (3. Thus, fir 4 /3 .  □
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Asym ptotic Normality

The asymptotic distribution of the GCE-NM solution can be derived by finding 

the distribution of At- Given that /?t =  Zp{Xj)  is a continuous function of At, the 

^-m ethod (Spanos, 1986, p. 201) may be used to approximate the distribution of fir- 

For example, suppose a: is a random vector such that x  ~  N[0, S]. For any continuous 

function, /i(-), the distribution of h(x) is N[0, S?h(x)E V  h'(x)] where \?h(x)  is the 

Jacobian m atrix of h(-) with respect to x.

Theorem 4.1.3 in Amemiya (1985) was modified to state and prove the following 

proposition.

Proposition 2.4 Under Assumptions A1-A4,

V T 0 t  - /? )= »  N  [ o ^ E ' C r 1]

i f  the GCE-NM error bounds are V  =  0 (T -1).

Proof: If At £ A, the first-order Taylor expansion of the FOC is

(2.68) S7\Mt{Xt) = Va-Mt(Ao) + Vaa'-Mt(A*)(At — A0)

for some A* between At and A0 by the Mean Value Theorem. The lefthand side (LHS) 

is 0  by D5, and the approximation may be rewritten as

(2.69) VT(X t  ~  A0) =  -  [Vaa'M(A- ) ] - 1 • [Vf  y A M ( A0)]

Note that the inverse of the Hessian matrix exists because it is a positive definite 

matrix for all T  and A* by the previous discussion.

To evaluate this expression, note that

(2.70) a/T Va Mt(A0) = s /T

=  V f

) Zp(*o) ~  Vw(X0) 

X ' ( y - X f 3 )  , „ fer_u
+  0 ( T  )
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which converges in law to N  [0, E*] by Assumption A4, Lemma 3.3, and Slutsky’s 

Theorem. Further, plim(A) =  A0 implies plim(A*) =  A0, which provides

(2.71) plim V av Mt (A') =  limVAA'M(A0)

X 'X ^ E Z(X0) f ^ l + S v=  hm .
t  T

=  QXZQ'

because V  =  0 (T -1). The limiting distribution for At  is

(2.72) V r ( A r - A 0) =* N  [ o ^ z Q T ^ i Q ^ z Q T 1]

=  iV[0,EAo]

Now, the continuity of Zp(A) and the ^-method may be used. For (3 = Zp(Xo),

(2.73) V T ( Z P(Xt ) - 0 ) = > N  [0, V yZ p (A )S Ao Va Zp( A)]

By the GCE-NM version of Equation (2.39),

(2.74) Vx'Zp(X) = Q?,z

which yields the desired result by substitution. □

Specifying V  =  0 ( T ~ l ) only affects the existence of an interior solution for a 

finite sample, and does not change the existence or consistency results as T  —> oo. 

If the rate of convergence were not changed, the remainder in Equation (2.70) would 

be 0 (  ~\/T), and multiplying by y /T  yields a remainder that is 0(1). Thus, the 

asymptotic bias in Ar would be

(2.75) -  ( Q E z Q Y 1 V w (Ac) 

where Vw(Xo) is a vector of constants.

A N o te  on th e  P u re  G C E -N M  P ro b lem

The GCE-NM solution is asymptotically equivalent to the LS or normal ML 

estimators because the FOC are equivalent in the limit of T  — the limiting model
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constraints are identical to the limiting normal equations. In the pure formulation of

the GCE-NM problem, V  = 0 for all T and the model constraint is

/ « \ X ' y  ( X ' X \(2-76) =  (̂ — J Zp(A)

If f l is  £ Z  for a particular T, Ar £ A and fir = Pl s - Otherwise, there is no interior 

solution, and At  £ 3(A). The existence result imphes that the pure solution, Ay, 

will exist for sufficiently large samples, wliich are at least as large as those required 

for the noise formulation. Consequently, the preceding results also hold for the pure 

GCE-NM problem, but the probability of having an interior solution to the noise 

problem is larger for a given T.

2.4.2 Sm all-sam ple Behavior

Although the large-sample properties of the GCE solution are helpful, the entropy 

formalisms were were developed to solve ill-posed problems. As well, the generalized 

entropy approach is motivated by inverse problems with limited data and prior infor­

mation. Consequently, the finite-sample properties of the GME-GCE solutions are 

of greater concern and are discussed in the present section.

Im p a c t o f E rro r  B o u n d s, V

The noise terms, Vw,  effectively ‘loosen’ the model constraints for a given set of 

observations, and an interior solution is more likely. If we view the GCE objective 

as a directed divergence function, wider error bounds provide a posterior that is 

‘closer’ to the prior distribution. The width of the error bounds affects the amount 

of shrinkage toward the prior, and the degree of shrinkage may be measured in the 

Lagrange multipliers.

The shrinkage property may be demonstrated for a special subset of the generic 

GCE problems. For each disturbance, let the support be symmetric about 0  and limit 

the number of support points to J  = 2 . In this case, et may be written as
vt [exp(—i>tAf) -  exp(ueAt)]

(2.77) e< =
exp(u(A<) +  e x p ( - v tXt ) 

— vt tanh(—vt\ i )
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where vt > 0  is the scalar bound on e*.

The following proposition describes the general impact of changes in the vector of
*

error bounds, v £ 9? , on the optimal Lagrange multipliers, A.

P ro p o s itio n  2.5 For the noise specification in Equation (2.77),

V „'A =  D • [VEzT +  S v ] " 1

where D is a diagonal matrix with elements

D u =  tanli(—vtX) — vtX [l — tanh2 (—utA)]

Proof: The proposition is a comparative statics result obtained by taking the total 

differential of the FOC for the dual version of the generic GCE problem,

(2.78) a  -  TZp{\ )  -  Vw(X) = 0

which has total differential

(2.79) [SOC] dX +  [vv 'lM A )] dv =  0

The first bracketed term is simply the Hessian m atrix for the SOC, Equation (2.39). 

The second term will be a diagonal matrix with elements

(2.80) = tanh(—vtX) — vtX [l — tanh2 (—utA)l
dvt L J

by the properties of the tanh(-) operator. Rearranging the arguments yields the pro­

posed result. □

A special case arises when T is an orthogonal matrix. The Hessian matrix from 

the SOC is also diagonal, and the impact of vt on Xt is

d \ t tanh(—utA<) -  vtXt [l -  tanh 2 (-U(A()]

2̂’81 dvt E  k azk + avt
which can be easily computed for a particular problem.

To illustrate the result, consider a simple noise formulation of Jaynes’ dice problem 

from Chapter 1. Let the bounds on the noise term be [—u,v] for some v > 0. Then, 

the GME probability of observing i on the next roll of the die is

(2.82) )», =  eXp(- .X ^
K 1 fi(A)
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with the associated error probability

exp(—vX)
(2.83) w =

where A is the optimal Lagrange multiplier.

To compute the impact of a change in v on A, write the dual objective function as

(2.84) M{  A) =  j/A +  log[ft(A)] +log[$(A)]

=  j/A +  log[fi(A)] +  log[2 -cosh(-uA)]

by employing the definition of the hyperbolic cosine. The FOC for the unconstrained 

problem is

(2.85) VaM(A) = y — Y^XiPi(X) — v • tanh(-uA ) =  0
t

Now, take the total differential of the FOC

(2 .8 6 ) d X { ^ 2M(X)}  +  dv{tanh(—vX) — uA[l — tanh2 (—i>A)]} =  0

where XJ2xM(X)  >  0 because M ( A) is strictly convex. Finally, solve for the desired 

ratio

. dX tanh (—vX) — nA[l — tanh2 (—uA)]
dv V xM {  A)

To evaluate this term, note that tanh(-) is an odd function and that tanh(a:) G 
[—1,1] Yx.  We find that

(2.88)
dv

As expected, ‘widening’ the error bound by increasing v reduces the absolute value 

of A. This action corresponds with a solution that is ‘more uniform’, or closer to the 

prior distribution. By considering the potential noise in the observed average, the 

posterior distribution is ‘shrunk’ toward the prior.

> 0 V A < 0

= 0

oII
<"*C

< 0 V A > 0
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Finally, consider the impact of using infinitely wide error bounds. Intuitively, 

the noise term  now ‘swamps’ the signal, and the GME solution is simply the prior 

distribution. To confirm the intution, recall the dual objective function

(2.89) M(A) =  a'X +  £ l o g  pl*(A)] +  £ l o g  [# t(A)]
k t

Note that for finite Xt, the error partition functions are

(2.90) $ t(A) =  2  • cosh(utA()f 0  if At =  0  

[ oo o.w.

Clearly, the disturbance terms dominate the remainder of the objective, and M ( A) 

takes on a minimum at A =  0 as vt —> oo.

A p p ro x im a te  D is tr ib u tio n s

The asymptotic normality property may be used to approximate the distribution 

of the GCE point estimate for finite samples. The basic idea is to use the ^-method to 

transform the asymptotic distribution of At and form the asymptotic approximation. 

Recall the limiting distribution of At

(2.91) VT(X t  — \ 0) => N  [0, Ea0] 

and the asymptotic approximation for small samples is

At ~1V[Ao, T - 1Ea]

- 1  T3I A > \ - 1

(2.92)

where

(2.93) S i

(2.94) A

(2.95) B

=  A  B(A')

( " )
X ' E eX

Ez (Xt ) ( —TfT I +  £y(A t)
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Consequently,

(2.96) AT ~  iV [A0 ,T ,2C,- 1r»(C,/) - 1]

(2.97) C = X 'X 'Z z { \T) X ,X  +  Ey(A)

(2.98) D = X ' E eX

Then, the distribution of f3j may be approximated by the ^-method. The required

Jacobian m atrix is

(2.99) V itZ p (*t ) = S z (V )  P j P )  

which is p re- and post-multiplied about E j^ to yield

(2 .1 0 0 ) Pr ~  N  [/?, Ez (At )(AwX )C - 1T>(C')"1 (Js:'X)Sz (At)]

If the GCE-NM problem is specified as a pure inverse problem, the Ey terms 

disappear. For an interior solution (i.e. Ez is full-rank), the approximate variance- 

covariance matrix is

(2 .1 0 1 ) ( x ' x y ' x ' Z e X i x ' x ) - 1

which is identical to the variance of the LS estimator. If the noise specification is 

used, the presence of Ey in the inverted terms reduces the variance of the estimator. 

Following the discussion in the preceding section, variance reduction is a property of 

shrinkage rules.

A N ote on Efficiency

The concept of efficient estimation is usually tied to a particular model, F(e),  or 

relative performance in a family of estimators (e.g. the Gauss-Markov result for linear 

unbiased rules). Consequently, efficiency considerations may be of little concern in 

inverse problem that are ill-posed or have otherwise limited information.

If efficiency is of concern, note that the limiting model constraints for the GCE- 

NM problem are equivalent to the limiting normal equations for the LS or normal 

ML problems, which are efficient if Ee =  a 2I t - Otherwise, the estimators may be
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improved by transforming the data to a scalar-identity error distribution and using 

the GLS rule. The same concept also applies to the GCE-GME problems. Suppose 

there exists some matrix, P , such that Var(Pe) =  a 2It - Then, the transformed GLM

(2.102) Py = P X Z p  + P V w

may be used to form the GCE model constraints. The transformation matrix, P , 

may be recovered by inverting the Cholesky decomposition of Ee. If Ee is unknown, 

it may be estimated in a consistent fashion (as in the feasible GLS case) to retain the 

large-sample properties.
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3.1 Introduction

The analytical results for the GCE solutions presented in Chapter 2 are useful, 

but limited to fairly restrictive model assumptions. Given tha t the GCE solution 

does not take a closed form, the performance of the entropy methods for particular 

problems is difficult to assess. The finite-sample distributions presented at the end 

of Chapter 2 are only approximate, and many of the traditional methods do not have 

well-developed small sample properties. For these reasons, Monte Carlo sampling 

experiments provide a useful basis for examining the properties of GCE relative to 

other methods of information recovery.

The purpose of the present chapter is to demonstrate the behavior of the GCE 

solutions using three sampling exercises. The first problem attem pts to recover a 

bounded mean from a single observation. Two traditional estimators, restricted ML 

and Bayes under normality, are compared to GME, and the robustness of estimators 

is examined under alternate error distributions. Second, a vector of unknown, real- 

valued parameters must be recovered from an ill-conditioned inverse problem. The 

problem is regularized by imposing bounds on the parameters, and GME is compared 

to LS, RLS, and the ridge estimators. Finally, alternate GME specifications for non- 

i.i.d. errors are demonstrated under an AR(1) error process. Unless otherwise stated, 

each experiment is based on 5000 Monte Carlo trials.

3.2 R ecovering a B ounded M ean

The basic properties of the generalized entropy solutions may be demonstrated 

using a simple problem. Consider a single observation, x = (3 + e, where e and 

(3 £ [—m, m] are unknown. The problem of recovering an image of (3 from x  is a 

familiar linear inverse problem in statistics.
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3.2.1 Norm al Errors

A common assumption is e ~  iV[0,1], and the sampling theory estimator is the 

restricted ML rule

require the normality assumption.

Alternately, consider a prior distribution with equal mass on points —m  and 

m.  Casella and Strawdermann (1981) show tha t the Bayesian posterior mean un­

der squared-error loss (SEL) is

if m < 1.06. For larger values of m, the minimax property may be extended by 

increasing the number of elements in the support of (3. Bickel (1981) examines the 

minimax character of the problem when /? £ !RA.

As in the LS case, the generalized entropy approach does not require the normality 

assumption. Using the Bayes support, (3 £ {—m ,m }, the GME model constraint may 

be written as

(3.1)

—m  if x < —m 

(3m l  = a; if a: £ [—m, m]

m  if x > m

The ML estimator may also be derived as the restricted LS estimator, which does not

(3.2) (3b = mtanli(ma:)

Motivated by an earlier result from Ghosh (1964), they also show that (3b is minimax

(3.3) x — — Zp  +  Vw

— —mp + m ( l —p) — vw + v( l  — w)

where v >  0 is the error bound. Taken as a special case of the generic GCE solution 

from Chapter 2 , the GME probability is

(3.4)
exp(mA) +  exp (—mX)

where A is the optimal Lagrange multiplier on the model constraint. The GME
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posterior mean is

3  — mexp(mA) +  m exp(-m A )
(3-5) p g m e  = ------------ r r r ; — /— —exp(mA) +  exp(—mA)

=  m ta n h (—mA)

Clearly, the GME and Bayes solutions are related through their common func­

tional form. The estimates are equal if A =  —x, which only occurs when x — 0. If the 

GME problem is treated as a pure inverse problem (i.e. v =  0), the GME solution is 

the posterior distribution on —m  and m with a mean of x. For x £ (—m, m), the pure 

GME solution is simply x. If the violated boundary is used in case of an infeasible 

solution, the pure GME solution is identical to 0m l ■ Thus, the ML approach is a 

special case of generalized entropy. For v > 0, the results from the small-sample sec­

tion in Chapter 2 imply that the optimal Lagrange multiplier is smaller in absolute 

value than A for the pure inverse problem. The posterior distribution will be closer 

to the prior (i.e. more uniform), and the solution to the noise formulation is a form 

of shrinkage estimator.

To compare the competing rules, let m  =  1 so that (3 b is minimax. For the GME 

with noise formulation, specify v =  3 according to the 3-cr rule. Also, infeasible 

solutions will be evaluated at the violated bound. The risk functions of the three 

estimators were recovered as the mean SEL (MSEL), ||(3 — (31|2, and the results for 

(3 £ [0,1 ] are plotted in Figure 3.1. The risk functions for the ML and Bayes estimators 

are nearly identical to those presented in Figure 2 of the Casella and Strawdermann 

article, and the Bayes estimator risk-dominates the ML solution. The GME solu­

tion risk-dominates the Bayes solution for most of the parameter space, and only 

surrenders its advantage for very large values of (3.

Again, the analysis of dX/dv in Chapter 2 implies that increasing v shrinks the 

pure GME solution away from the sample and toward the prior mean. In this example, 

the prior mean is 0, and the pure or sample solution is (3m l . Conceptually, each v > 0 

corresponds to some <j>(x) £ [0 , 1 ] such tha t (3q m e  = ^{x )(3m l ■ In other inferential 

settings, several methods have been devised for choosing the generic shrinkage factor, 

(f>(x), and most methods depend on the underlying signal-noise ratio for the model.
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Figure 3.1: Empirical Risk of Bounded Normal Mean Estimators
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However, the GME approach is relatively easy to implement because v is simply 

viewed as an error bound, and information about the signal-noise ratio is directly 

employed.

In the present example, an error bound of v = 3 allows for a feasible solution if 

x  G (—4,4). The probability of a boundary solution is nearly zero, even if \(3\ =  1, 

and the probability that 4>{x) = 1 V x  is nearly 0. As v decreases, Pr[</> =  1  V x] -4- 1, 

and the GME solution will behave more like the restricted sampling estimator, (3ml■ 

For v G {0.5,1,3}, the empirical risk functions of the GME and Bayes solutions 

are presented in Figure 3.2. As expected, the wider error bounds allow for a GME 

solution that is ‘closer’ to the prior distribution. As v decreases, the GME risk 

becomes ‘flatter’ as it uses less of the prior information. Note that for v = 0.5, the 

GME solution behaves very much like the Bayes estimator.

Alternately, the performance of the GME solution may be explained by considering 

the minimum distance interpretation of the GME problem. The Bayesian posterior 

distribution for (3 is derived by combining the normal likelihood with the discrete, 

uniform prior under Bayes Rule. W ithout a likelihood function, GME solves for the 

posterior that is ‘closest’ to the prior and satisfies the model constraint, Equation 

(3.3). By using v > 0, the constraint is effectively loosened, and the posterior may 

be ‘shrunk’ closer to the prior. Consequently, GME will do very well when the prior 

information is correct, but the other estimators dominate GME when (3 is large. In 

this example, an error bound of v = 0.5 provides a GME posterior distribution that 

is nearly equivalent to using Bayes Rule and a normal likelihood function to evaluate 

the sample information. Although it is not a true Bayesian method, GME may be 

informally viewed as a nonparametric (i.e. sans likelihood) Bayesian technique for 

recovering information about (3.

3.2.2 A lternate Error Distributions

If the restricted ML approach is viewed as a restricted LS estimator, the Bayes 

estimator is the only rule based on a distributional assumption. To examine the 

robustness of the competing methods, the sampling experiments were repeated using

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 3. APPLICATIONS AND PERFORMANCE

o

0> UJ ID UJ

co 0  CD (3

o

80 9'0 S'O O’O

13SIN

Figure 3.2: GME Risk under Various Error Bounds
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two non-normal alternatives. First, the S tudent-t distribution with 3 degrees of 

freedom was used to evaluate performance under a heavy-tailed distribution. To 

maintain a unit variance, all of the drawings from the t(3) pseudo-random number 

generator were scaled. The risk functions of the restricted ML, Bayes, and GME 

estimators appear in Figure 3.3.

For v =  3, the risk functions for the ML and Bayes solutions maintain the same 

relationship, but the GME solution does not shrink the sample as strongly as before. 

Using v =  6  and v =  9, the risk functions for the GME solution were computed, and 

these appear in Figure 3.4. As before, decreasing v provides less shrinkage toward 

the prior, and the risk function is ‘flatter’ as it uses more of the sample information.

Another variation is to consider a skewed error distribution. The following results 

are based on errors drawn from a x 2 (4) — 4 distribution, which has a  mean of 0  due 

to mean-centering. As before, the errors were also scaled to have unit variance. By 

incorrectly assuming that the errors are standard normal, the GME error support is 

v =  3. Given that the error distribution is no longer symmetric, Figure 3.5 presents 

the risk functions for (3 £ [—1,1].

Again, the restricted ML and Bayes estimators maintain the same relative perfor­

mance, although the risk functions take a different general shape. Further, the GME 

solution continues to dominate both ML and Bayes over much of the parameter space. 

Intuitively, the favorable performance of the GME solution follows from its reliance on 

sample and prior information. Although the ML result is also the restricted LS rule, 

which does not require normality, the shrinkage behavior of the GME rule improves 

the risk of the estimator.

Finally, suppose we know the disurbances are skewed, and use this information 

to shift the entropy error supports. Using an informative prior distribution of u = 

[0.667,0.333] on V  = [—\/2 ,2 \/2 ], the inverse problem may be solved under the GCE 

framework. The resulting risk function is also presented in Figure 3.5. In this case, 

the additional information used in the GCE problem uniformly improves the entropy 

risk.
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3.3 A n  Ill-C on d ition ed  P roblem

As stated in Chapter 1, the data available for solving economic inverse problems 

are often limited to non-experimental observations. In the absence of an orthogonal 

experimental design, there may exist one or more exact or near-exact linear depen­

dencies among the explanatory variables. Such dependencies are fairly common in 

problems like the demand example where the set of explanatory variables may in­

clude real prices of related goods, which tend to move together over time. Also, linear 

dependencies may be induced in finite samples by certain data transformations (e.g. 

linear spline models). In either case, X  does not have full column rank or a numerically 

stable inverse matrix, and the problem is ill-conditioned or collinear.

3.3.1 Sym ptom s and Treatment

A common symptom of ill-conditioning in the GLM is unstable estimates of /?, 

and small changes in the indirect observations result in large changes in the recovered 

image. The problem is easily demonstrated for the LS estimator, P is  — {X'Xr.)~l X 'y ,  

which is an unbiased estimator of (3. The LS estimator is also the ML estimator if 

e ~  JV[0 , £ e] with known variance-covariance structure. If the problem is severely ill- 

conditioned, X  does not have full column rank and the LS estimator is not uniquely 

defined.

In moderately ill-conditioned problems, (X 'A -) - 1  may exist, but Pis  may have 

a very large elements in its variance-covariance matrix. Consider the singular value 

decomposition (SVD) of the design matrix, X  =  QLR,  where Q is a (T x A') orthog­

onal matrix, A is a (K  x K)  diagonal matrix, and R  is a (K  x K)  orthogonal matrix. 

The diagonal elements of L , 7T(t), are the singular values of X , and the columns of R  

are the associated eigenvectors of X .  Using the spectral decomposition of (JA'A-)-1 , 

the variance m atrix is

(3.6) V a r 0 LS) =  a \ X ' X ) ~ l = £  — R kR'k
k 7r*

if Ee =  a 2It-  A s the problem becomes more ill-conditioned, one or more of the {tt^} 

approaches 0 , and the variance of Pis  increases.
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Although the degree of collineaxity present in a given design m atrix may be mea­

sured in a variety of ways, the singular values axe especially useful. Belsley (1991) 

recommends the condition number

(3.7) k { X ' X )  =
K{K)

which is the ratio of the largest and smallest singular values of X  (with columns 

scaled to unit length). If the design matrix is orthogonal and the columns of X  are 

linearly independent, 7T(t) =  1 Vi and k( X 'X )  =  1. As the degree of colhnearity 

increases, 7T(k-) —> 0 and k( X 'X )  —» oo. where Q is a (T  x K )  orthogonal matrix, L 

is a (K  X K )  diagonal matrix in which the i th element is 7T(t), and R  is a ( K  X I \)  

orthogonal matrix.

Belsley notes that potentially harmful collinearity may arise if k( X 'X )  is as small 

as 25, but such cases are rarely encountered in practice. Although k ( X 'X )  is only 

an ordinal measure of colhnearity, Belsley recommends using k( X 'X )  > 900 as a sign 

for the presence of potentially harmful colhnearity. Given that k{ X 'X )  only measures 

the most severe linear relationship in X , he further recommends examining the full 

set of K  condition indices

for the presence of two or more potential harmful linear dependencies.

Of course, an erratic estimate of /3 is only recognized as such if it does not conform 

to our prior behefs. In the demand example, a positive own-price elasticity is not very 

plausible, and a positive estimate may indicate the presence of significant colhnearity 

(or a number of other problems with the data or the model). As in the ill-posed case, 

prior information may be used to regularize the ill-conditioned problem and reduce 

the variation in the estimates.

Linear inverse problems associated with the GLM may be regularized or aug­

mented in variety of way. The parameter space may be restricted to subsets of 

under the restricted GMM (e.g. LS) or ML approaches. Using subjective probabili­

ties, an informative prior distribution for (3 may be used in a Bayesian analysis. To 

reflect bounds on the unknown parameters, the Bayesian prior distributions may be
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discrete (as in the bounded mean example). Alternately, the support of a Lebesgue 

prior density may be truncated, and the posterior distribution may be evaluated as 

shown by Geweke (1986). MOR techniques are another means of penalizing solutions 

that are inconsistent with the prior information.

A special case of MOR is quadratic regularization (QR) which chooses (3 to min­

imize

(3.8) £  = \\y — Xf3\\2 -f Tj(3'C(3

Here, C  is a positive definite matrix, f3'C(3 is the square of the weighted Euclidean 

norm of (3, and tj is a tuning or smoothing parameter used to establish the trade-off 

between the two criteria. In effect, we are penalizing solutions whose ‘norm’ exceeds 

some prior bound, and the problem is now well-posed. The penalized solution,

(3.9) PQR =  { X 'X  +  v C T ' X ' y

is commonly known as the ridge regressor. From the Bayesian perspective, (3qr is 

the posterior mean associated with a N[X(3, It] likelihood function and prior distri­

bution g({3) =  N[0, (77C )-1]. Given Lebesgue prior and likelihood distributions, the 

variance-covariance structure is analogous to the MOR ‘norm’ restictions. In either 

the frequentist or Bayesian world, the researcher must still choose the smoothing or 

prior parameters to reflect their information for a particular problem.

Unfortunately, economists rarely have information about the ‘norm’ of their pa­

rameter vectors, and the choice of a likelihood function is more a m atter of convenience 

than of using actual prior knowledge. The set of available information for economic 

inverse problems is often limited to signs or magnitudes of individual parameters 

(e.g. elasticities). The GME-GCE approach is a feasible alternative as it only re­

quires modest assumptions about the error structure, does not require a likelihood 

function, and employs the available prior information to specify Z.

3.3.2 A Sampling Experiment

To examine the relative performance of the GME-GCE techniques, the results 

from a series of Monte Carlo sampling experiments are presented. The experiments
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involve the recovery of real-valued parameters from a linear model under an ill- 

conditioned design matrix, and the performance of the entropy-based methods is 

compared with the traditional methods for handling collinear problems: the least 

squares (LS), restricted least squares (RLS), and ridge estimators.

To form the signal for the MC experiment, a (10 x 4) design matrix was drawn 

from an i.i.d. N (0,1) pseudo-random number generator. Then, the SVD of X  was 

recovered, and the eigenvalues in L were replaced with the K -vector,

(3.10) a =
l  +  H 7 ’Vl+A'J

which has length K  =  4. The new design matrix, X a = Q LaR , is characterized 

by K,(X'aX a) = y  so that the degree of collinearity may be specified a priori. For 

convenience, the columns of X a are not scaled to unit length. For (3 =  [2,1, —3,2]', 

the mean vector of the dependent variables, X af3, was formed, and T  i.i.d. iV(0,1) 

pseudo-random errors, e, were added to form vector of noisy observations, y.

For each of 5000 MC trials, the LS, RLS, and ridge methods were used to estimate 

P from the relevant X a and y. The RLS estimates were restricted to Pk 6 [—10,10] 

for each k , and the Hoerl, Kennard and Baldwin (1975) iterative ridge estimator was 

used with C = I k  and

(3.11) t
K ’ p>p

In addition, estimates of P  were recovered by the GME-D method with parameter 

supports Zk = [—10,10] for each k. For the error param eter space, the 3-cr rule was 

used, and vt =  [—3,3] was specified for each t.

To gauge the performance of the competing methods, the precision of the esti­

mators was evaluated under squared error loss, SEL =  \ \ P  — P \ \ 2 . The average SEL 

(MSEL) for the competing methods of information recovery are prsented in Figure 

3.6. The horizontal axis of each plot is expressed in units of k(X 'X )  ranging from 1 

to 100. Recall that k(X 'X )  > 900 indicates a potentially harmful degree colhnearity.

The empirical risk of LS is 4.02 when k (X 'X )  = 1, which is very close to its 

theoretical value. The empirical risk of RLS is close to the LS risk in the nearly
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orthogonal case, but it declines relative to LS as k(X 'X )  increases due to the variance 

inflation effect of collinearity. That is, the LS estimates are more likely to fall outside 

the restricted parameter space. Further, the iterative ridge estimator is biased, and 

its empirical risk is 4.4 when n (X 'X )  = 1. As the degree of collinearity increases, the 

empirical risk functions cross and the ridge estimator risk-dominates LS. Again, the 

regularity conditions reduce the risk of the ridge estimator relative to LS.

In contrast, the empirical risk of GME is nearly invariant to the degree of ill- 

conditioning, and it dominates the traditional estimators over the range of k(X 'X ) .  

The superior performance of the entropy-based method in the region of very slight 

colhnearity was unexpected, although its superiority in the ill-conditioned area was 

anticipated.

One possible explanation of the entropy performance follows from the intuition 

behind the ridge estimator. The ridge estimator is often viewed as a variance-reduction 

technique that restricts the least squares solution to an ellipsoid in the parameter 

space,

[x  e  R k  : INI2 <  ( 3 ' c p )

As the degree of colhnearity increases, the restricted ellipsoid expands with the ridge 

parameter, 77, and the average SEL will rise. In the GME case, the parameter vector is 

restricted to a fixed hypercube about the origin. Thus, the relevant information about 

/3 is introduced through the support space, Z, and the performance is not affected 

by the degree of colhnearity. Although the same information is used to restrict the 

RLS solution, the risk of the GME-D rule is lower due to the additional shrinkage 

provided by the noise terms.

It is important to note that risk-consequences of the GME estimator are offset in 

other areas. For example, the average sum of squared errors (MSSE) may be used 

to measure the empirical prediction loss, and Figure 3.7 presents the MSSE for each 

of the estimators. As expected, the least squares rules dominate GME under this 

measure because the estimates are selected on this basis, and the restricted LS rules 

(RLS and ridge) have larger MSSE than LS.
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Figure 3.6: MSEL in Ill-Conditioned Problems
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Figure 3.7: MSSE in Ill-Conditioned Problems
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Empirical Distribution of /?3

Although the finite sample properties of the ridge and GME methods are unknown, 

especially in the collinear cases, the empirical distribution of the recovered parame­

ters may be used to gather some information. Figures 3.8 and 3.9 present smoothed 

densities of the LS, ridge, and GME point estimates for /33. The RLS estimates are 

excluded given their relation to the LS rule. The impact of ill-conditioning is rep­

resented by an orthogonal design matrix, k(X 'X )  — 1, and a moderately collinear 

design, k(X 'X )  =  90.

In the orthogonal case, the mean (-3.02) and variance (0.99) of the LS estima­

tor are very close to their theoretical values. As expected, the data-based, iterative 

method of selecting the ridge parameter provides for some bias and variance-reduction 

relative to LS (mean =  -2.54, variance =  0.96). However, the GME distribution is 

centered between the true value (/33 =  —3) and the center of its parameter support, 0. 

Consequently, the shrinkage property of the GME solution provides less bias (mean 

=  -2.78) and less variance (0.83).

As the degree of collinearity increases, the LS distribution has greater variance 

(as expected) but remains centered over the true parameter value, /?3 =  —3 (mean =  

-3.05, variance =  21.18). The ridge and GME distributions shift right as the degree 

of shrinkage (toward zero) increases, and their sample means are -1.82 and -2.17, 

respectively. Further, the ridge technique has a greater sample variance (4.77) than 

GME (1.33). Consequently, the entropy technique continues to reflect less bias than 

the ridge estimator, and it has smaller variance than either of the traditional methods 

in this sampling study.

3.3.3 A lternate Entropy Formulations

The restrictions imposed on the parameter space through Z  reflect prior knowledge 

about the unknown parameters. However, such knowledge is not always certain, and 

researchers may want to entertain a variety of plausible bounds on (3. The preceding 

sampling experiments were repeated using two additional Z  matrices, Zk = [—5,5] 

and Zk =  [—15,15] for each k. The empirical risk functions for these alternatives are
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Figure 3.8: Empirical Distribution of /S3, k(X 'X )  =  1
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presented in Figure 3.10.

As the param eter supports are widened, the GME risk functions modestly shift 

upward reflecting the reduced constraints on the parameters space. Hence, wide 

bounds may be used without extreme risk consequences if our knowledge is minimal 

and we want to ensure that Z  contains (3. Intuitively, increasing the bounds increases 

the impact of the data and decreases the impact of the support. Of course, narrowing 

the param eter supports only improves risk as long as the true parameter vector is well 

in the interior of Z .  Although the results are not included here, the corresponding 

MSSE shifts in the opposite direction, highlighting the trade-off between the precision 

and prediction losses.

Finally, the cross-entropy criterion may be used to recover information about 

(3 given non-uniform prior distributions on Z. Using the GCE-D formulation, the 

Monte Carlo trials were repeated under two conflicting priors. First, the correct sign 

of the true parameters was included by specifying prior weights of qk = [0.375,0.625] 

for (3k > 0, and the qz =  [0.625,0.375] for /?3. Thus, the prior mean of each parameter 

is 2.5 in absolute value. Next, the prior weights were reversed so that the prior means 

are also 2.5 in absolute value, but with the wrong sign. The empirical risk functions 

appear in Figure 3.11.

As expected, including the correct prior signs improves risk for all values of 

k(X 'X ) .  However, the penalty for using the wrong prior information is not very 

large relative to the risk of the alternate estimators. The reason undoubtedly lies in 

the model constraint, which must be satisfied for any interior solution to the GCE-D 

problem. Although the incorrect prior weights affect the results, the entropy method 

cannot stray too far from the true parameters because it must also satisfy the sample 

information. This property is another benefit of the generalized entropy approach -  

incorrect prior information is effectively ignored if it does not agree with the sample.

3.3.4 Summary

Based on the limited evidence presented here, the GME-GCE framework is a 

feasible alternative to the standard methods of information recovery in ill-conditioned
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Figure 3.10: GME Risk under Alternate Z
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Figure 3.11: GCE Risk under Alternate Priors
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linear inverse problems. Naturally, the traditional least squares techniques provide 

smaller average prediction losses, MSSE. However, the entropy-based methods are 

nearly invariant to colhnearity, and they provide smaller average risk (MSEL) in 

moderately ill-conditioned problems. The trade-off between these two losses is clearly 

a subjective issue.

3.4 D ependent Error Structure

To this point, the GLM disturbances have been treated as i.i.d. random variables 

(i.e. Ee =  ct2 I t ) .  Consequently, the generalized entropy error bounds for each dis­

turbance may be specified without regard for underlying dependencies or changes in 

magnitude or variation. In the more general case, Ee may be a diagonal m atrix with 

non-stationary variances, of, that reflect heteroskedastic behavior. Alternately, the 

errors may be correlated, and the off-diagonal elements of Ee will be non-zero. For 

example, heteroskedastic errors may appear in economic models due to changes in 

economic policies or varying amounts of market information. Correlated or autocor­

related errors may result from host of sources, including dependent economic actions, 

habitual behavior, lead-lag relationships, or biological cycles.

In general, the traditional methods of information recovery are still feasible estima­

tors of (3. However, the properties of the estimators may be improved by accounting 

for the error structure. For example, the LS estimator is no longer best unbiased if 

Ee is not a scalar-identity matrix, but the data may be transformed to derive a best 

unbiased estimator under the GLS framework. Hansen (1982) shows that GMM esti­

mators may be asymptotically efficient if the objective norm is appropriately weighted 

(as in weighted LS).

The concepts of ‘best’ and ‘efficient’ are of secondary importance in the general­

ized entropy framework. In ill-posed problems, most linear estimators are infeasible, 

and the problem of finding the best member of the class is also ill-posed. Further, ef­

ficiency requires knowledge of the underlying distribution, F(e), and this information 

is rarely available in practice. However, the GME-GCE problems may be formulated 

to include information about the variance-covariance structure of e.
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To demonstrate the various GCE formulations for dependent error structures, 

consider a simple AR(1) version of the GLM

(3.12) y =  Xf3 + e

(3.13) e* =  pet-i P  Vt

where p £ (—1,1) and vt is a white noise disturbance with variance er„. If the error 

process is assumed to extend into the infinite past, it is well-known tha t Ee has 

elements

a 2pi
(3.14) <r., =

where j  = \s — 11.

As previously stated, the GME solution may be viewed as a shrinkage version

of the LS estimator. By ignoring the correlated errors, GME will be a feasible, yet

inferior rule. In fact, it is somewhat likely that the GME problem does not have an

interior solution, especially if p is large or the error bounds are narrow relative to cr2.

One approach to solving the AR(1) model is to use the GLS transformation to

derive an i.i.d. error distribution. As discussed at the end of Chapter 2, there exists

some matrix P  such that P 'E eP  =  It - Then, V ar(P,e) =  cr2/^ , and we may proceed

as we did in the i.i.d. case. If p and cr are known, the transformation matrix, P , may

be recovered by inverting the Cholesky decomposition of Ee.

To evaluate this approach, consider the orthogonal design case of the model used

in the preceding section, k (X 'X )  = 1. For p £ [0,1], a set of standard normal

errors were drawn and correlated according to Equation (3.13).1 Given the resulting

noisy signal, the Cholesky result was inverted and used to transform the data for

each Monte Carlo trial and each p. Then, the GME-D solution was computed using

Zk =  [—10,10] for each k and Vt =  [—3,3] for each t. The risk functions for the LS,

GLS, and GME estimators are presented in Figure 3.12.

As expected, GLS provides a vast improvement on LS as p increases. Also, the

GME risk is lower than the GLS risk due to the shrinkage property of the entropy

'To represent the infinite history of the series, the first error was drawn from a normal distribution 
with variance (1 — p2)- 1 .
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Figure 3.12: GME Risk under GLS Transformation
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method. If the disturbances axe ignored and a pure GME formulation is used, the 

GLS and GME solutions would be identical for interior solutions, (3 G Z .

An alternate entropy formulation is to specify the AR(1) relation in the model 

constraint and recover p as we do for the other unknowns. Here, a support of [—1,1] 

was specified for p and embedded in V , and the entropy of the resulting distribution on 

the correlation coefficient was added to the objective function. The prior information 

about p was first specified under a uniform distribution to give a prior mean of 0 

(GME). Then, cross-entropy was used to solve the problem when the true value of p 

is used as the prior mean (GCE). Note tha t the model constraints are now nonlinear 

functions of the unknown probabilities. Although the computational properties of the 

problem are more complex, the analytical properties are largely unchanged (Shore and 

Johnson, 1980).

Due to the computational burden of the nonlinear problem, the number of Monte 

Carlo trials was reduced to 500. The resulting risk function of the GME-D and GCE- 

D solutions are presented in Figure 3.13, and the average value of the recovered p is 

plotted in Figure 3.14. As expected, the informative priors improve the risk behavior 

of the GME solution, and the average estimates of p are nearly identical to the true 

values.

One final alternative is to directly recover p rather than probabilities on the sup­

port of p. Here, p appears in the model constraints, but not the objective function. 

The optimal p is simply selected as a system parameter, and this approach follows 

the entropy formulation of dynamic optimization problems used by Golan, Judge and 

Karp (1993).
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Figure 3.13: Nonlinear GCE Risk under AR(1) Errors
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4.1 Sum m ary o f  th e  R esearch R esu lts

In the preceding chapters, the generalized entropy methods of information recov­

ery were developed as extern'^ns of the M E-CE formalisms. Unlike many of the 

traditional methods of inference, the entropy techniques require very little informa­

tion and may be adapted to include the available sample or prior information. Given 

that economic data axe characteristically noisy, limited, partial, or incomplete, the 

entropy approach is an attractive means for solving economic inverse problems.

The generic GCE problem was specified in Chapter 2, and it includes many of the 

members of the GLM family as special cases. The problem was solved analytically, 

and the solution was shown to be unique and admissible if the constraint set is non­

empty. Although the solution does not take a closed form, the primal (constrained) 

problem satisfies the saddle-point property, and the dual formulation may be used 

to solve the problem in an unconstrained fashion. A brief computer algorithm was 

outlined, and it takes previously published computing rules as special cases.

The dual formulation may also be used to derive basic properties of the generalized 

entropy solutions. For the GCE-NM problem, tools developed to study M-estimators 

were used to show that the optimal Lagrange multipliers, Aj, and hence the point 

estimator, (3t , are consistent and asymptotically normal. In small samples, the ap­

proximate distribution of fir  was derived from the large-sample results. Also, the 

FOC of the dual problem were used to show that the error bounds serve as shrinkage 

factors

Three major sampling exercises were presented in Chapter 3 to demonstrate the 

performance of the GCE-GM E solutions in simple cases of the GLM. First, a bounded 

mean was recovered under different error distributions. The GME performance under 

SEL is relatively robust, and the shrinkage property provides for risk improvements 

in the presence of limited prior information. Next, the parameters of a linear model 

subject to colhnearity were recovered using LS, RLS, ridge and GME estimators. 

The GME risk is nearly invariant to the degree of ill-conditioning, although the 

alternate estimators provide better prediction loss performance. The GME results 

may be improved by using more informative parameter supports or prior weights, but
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incorrect information does little damage to the GME results. This is undoubtedly due 

to the use of the model constraints, which ensure that the GME solution must satisfy 

the observed information. Finally, a model with AR(1) errors was used to demonstrate 

various methods of handling dependent error structures in the generalized entropy 

framework. For example, the data may be transformed as in the GLS format, or the 

correlation coefficient may be recovered with the other unknowns.

In summary, the GCE-GME framework is a feasible approach for recovering in­

formation, especially if the inverse problem of interest is ill-posed, ill-conditioned, or 

reflects prior knowledge about the underlying economic system. Even if the inverse 

problem is well-posed and amenable to estimation under traditional methods, the 

GME-GCE solutions may provide better performance based on the limited evidence 

included in the Chapter 3.

4.2 Interpreting G eneralized E ntropy

Although the generalized entropy approach is not strictly Bayesian or frequentist, 

it may be related to methods employed by either group. In the sampling theory 

world, GME-GCE is a form of minimum distance estimation. However, the distances 

are not measured in the sample space, y . Rather, the sample information is used 

to constrain the solutions, which are selected to minimize Kullback-Liebler directed 

divergence in the parameter (probability) space.

As noted throughout the dissertation, the pure GCE solutions may be identical to 

restricted sample-based estimators. For example, the pure GME and the restricted 

ML-LS rules are the same for the bounded mean problem in Chapter 3. By including 

the disturbances, the GCE solutions to inverse problems with noise may be viewed 

as shrinkage rules that reduce the influence of the sample information based on the 

underlying signal-noise ratio. Unlike other shrinkage estimators, the GCE shrinkage 

factor is controlled by v , which is directly interpretted as an error bound.

From the Bayesian perspective, generalized entropy may be informally viewed 

as a non-param etric technique. True Bayes point estimators employ a likelihood 

function, which is incorporated with the prior information through Bayes rule. The
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GCE approach does not use a likelihood, and recovers the posterior distribution tha t 

is closest to the prior, yet satifies the sample information. The width of the error 

support essentially serves as the variance of the likelihood function -  wider bounds 

imply greater variation in the data, and the posterior more closely reflects the prior 

information.

Finally, it is im portant to reiterate that the generalized entropy methods should 

be viewed as an alternate method of information recovery. Although GCE shares 

properties with many of the traditional methods, it is not strictly frequentist or 

Bayesian.

4.3 E xtensions o f th e D issertation  R esearch

The dissertation research may be extended in two principle ways. First, some of 

the analytical results used to demonstrate the properties of the generalized entropy 

estimators are new to the entropy literature. Examples include the computing algo­

rithm, which extends previously published efforts, and the large-sample properties of 

the GCE-NM model. However, these results are relatively primative when compared 

to the current state of estimation theory. The behavior of more complex entropy for­

mulations is of interest, and a great deal of work lies ahead. Nonetheless, the concept 

of generalized entropy is itself an innovation, and it will take some time before these 

methods are understood as deeply and as fully as the traditional methods, which have 

been with us for decades.

Second, the simplicity and convenience of the GLM are largely responsible for its 

popularity in applied research. A large number of models may be expressed in the 

GLM form, and only a few were examined in this research. Another linear model that 

has been studied under the generalized entropy framework is the first-order, finite 

and discrete Markov chain (stationary and otherwise) (Lee and Judge, 1992). The 

basic formulation of the Markov problem is to choose the set of transition probabili­

ties, {p,j}, that satisfy the observed transition relations and are closest to the prior
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transition probabilities. Formally, the GME-GCE solution minimizes

(4.1) I(p ,q ,w ,u )  = p 'log(p/q)+  w 'log(w /u)

subject to

(4.2) X  = X .-lP + V w

(4.3) i K  = ( I k ® i k )p

(4.4) i t  = ( I t  ®  i j ) w

where X  is the m atrix of observed frequency distributions and P  is the unknown 

transition matrix. Although a variety of estimation techniques have been devised 

for this problem, most require enough transitions to form a well-posed, stationary 

problem. Further, the flexible nature of the GME-GCE framework allows researchers 

to account for nonstationary chains by specifying a dynamic set of model constraints, 

Equation (4.2).

Other linear models that take this form include input-output relations, market 

share and size-distribution of firms, and qualitative choice models. In the latter case, 

the set of explanatory variables are used as weights to form first moments from the 

observations of the multinomial random variables. Specifically, the model equation is 

formed as

(4.5) ( I j ® X ,) y  = (IJ ® X ,)p

where y is the T J-vector of observed multinomial choices, and p is the associated 

vector of probability distributions over choices for each observation (individual). Note 

that this is the FOC for the multinomial logit ML problem, which may be viewed as 

a special case of GME-GCE (as with LS-ML). By including a noise term, V w , the 

GME-GCE solution is a shrinkage version of the standard sampling estimator. As in 

the preceding models, the GME-GCE solution to the qualitative choice problem may 

be computed with limited data or informative prior distributions — refer to Golan, 

Judge and Perloff (1994) for additional details.

A large number of linear models have yet to be considered under the GME-GCE 

framework, and these include simultaneous systems of equations, model selection
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problems, and time series models in the time domain (e.g. ARMAX models). Al­

though some features of these problems distinguish them from those cases already 

examined, there is no reason to believe that the properties and performance of the 

entropy methods will be vastly different. Finally, as demonstrated in Chapter 3, the 

GME-GCE specifications may be extended to handle nonlinear constraints as long 

as the constraint qualifications of nonlinear programming (Kuhn-Tucker or Arrow- 

Hurwicz-Uzawa) are satisfied. Thus, non-linear, non-stationary, or dynamic specifi­

cations may be included as additional model constraints.
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